Advertisement

Annals of Hematology

, Volume 94, Issue 1, pp 13–22 | Cite as

Downregulated CXCL12 expression in mesenchymal stem cells associated with severe aplastic anemia in children

  • Yu-Hua Chao
  • Kang-Hsi Wu
  • Shiow-Her Chiou
  • Shu-Fen Chiang
  • Chih-Yang Huang
  • Hsiu-Ching Yang
  • Chin-Kan Chan
  • Ching-Tien Peng
  • Han-Ping Wu
  • Kuan-Chih Chow
  • Maw-Sheng Lee
Original Article

Abstract

The mechanisms of idiopathic severe aplastic anemia (SAA) in children are not completely understood. Insufficiency of the bone marrow microenvironment, in which mesenchymal stem cells (MSCs) are an important element, can be a potential factor associated with hematopoietic impairment. In the current study, we studied whether aberrant gene expression could be found in MSCs from children with SAA. Using microarray analysis, two different patterns of global gene expression were detected in the SAA MSCs. Fourteen genes (POLE2, HGF, KIF20A, TK1, IL18R1, KITLG, FGF18, RRM2, TTK, CXCL12, DLG7, TOP2A, NUF2, and TYMS), which are related to DNA synthesis, cytokines, or growth factors, were significantly downregulated. Further, knockdown of gene expression was performed using the small hairpin RNA (shRNA)-containing lentivirus method. We found that knockdown of CXCL12, HGF, IL-18R1, FGF18, or RRM2 expression compelled MSCs from the controls to behave like those from the SAA children, with decreased survival and differentiation potential. Among them, inhibition of CXCL12 gene expression had the most profound effects on the behavior of MSCs. Further experiments regarding re-introduction of the CXCL12 gene could largely recover the survival and differentiation potential in MSCs with inhibition of CXCL12 expression. Our findings suggest that MSCs from children with SAA exhibit aberrant gene expression profiles and downregulation of CXCL12 gene may be associated with alterations in the bone marrow microenvironment.

Keywords

Aplastic anemia Bone marrow failure CXCL12 Gene expression Mesenchymal stem cells 

Notes

Acknowledgment

The study was supported by grants from the Chung Shan Medical University Hospital (CSH-2013-A-006), the China Medical University Hospital (DMR-102-039), the Tao-Yuan General Hospital (PTH9909), and the National Research Program for Genomic Medicine (NSC 97-3112-B-001-016).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Montane E, Ibanez L, Vidal X, Ballarin E, Puig R, Garcia N, Laporte J-R, Catalan Group for Study of Agranulocytosis and Aplastic Anemia (2008) Epidemiology of aplastic anemia: a prospective multicenter study. Haematologica 93:518–523PubMedCrossRefGoogle Scholar
  2. 2.
    Davies JK, Guinan EC (2007) An update on the management of severe idiopathic aplastic anaemia in children. Br J Haematol 136:549–564PubMedCrossRefGoogle Scholar
  3. 3.
    Kurre P, Johnson FL, Deeg HJ (2005) Diagnosis and treatment of children with aplastic anemia. Pediatr Blood Cancer 45:770–780PubMedCrossRefGoogle Scholar
  4. 4.
    Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26:1387–1394PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C, Valtieri M (2008) Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol 36:1035–1046PubMedCrossRefGoogle Scholar
  6. 6.
    Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884PubMedCrossRefGoogle Scholar
  7. 7.
    Verfaillie CM (1993) Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 82:2045–2053PubMedGoogle Scholar
  8. 8.
    Gordon MY (1988) Extracellular matrix of the marrow microenvironment. Br J Haematol 70:1–4PubMedCrossRefGoogle Scholar
  9. 9.
    Chao YH, Wu HP, Chan CK, Tsai C, Peng CT, Wu KH (2012) Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. J Biomed Biotechnol 2012:759503PubMedCentralPubMedGoogle Scholar
  10. 10.
    Wu KH, Sheu JN, Wu HP, Tsai C, Sieber M, Peng CT, Chao YH (2013) Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: a pilot study. Transplantation 95:773–777PubMedCrossRefGoogle Scholar
  11. 11.
    Xu Y, Takahashi Y, Wang Y, Hama A, Nishio N, Muramatsu H, Tanaka M, Yoshida N, Villalobos IB, Yagasaki H, Kojima S, Xu Y, Takahashi Y, Wang Y, Hama A, Nishio N, Muramatsu H, Tanaka M, Yoshida N, Villalobos IB, Yagasaki H, Kojima S (2009) Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic anemia. Exp Hematol 37:1393–1399PubMedCrossRefGoogle Scholar
  12. 12.
    Holmberg LA, Seidel K, Leisenring W, Torok-Storb B (1994) Aplastic anemia: analysis of stromal cell function in long-term marrow cultures. Blood 84:3685–3690PubMedGoogle Scholar
  13. 13.
    Bacigalupo A, Valle M, Podesta M, Pitto A, Zocchi E, De Flora A, Pozzi S, Luchetti S, Frassoni F, Van Lint MT, Piaggio G (2005) T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol 33:819–827PubMedCrossRefGoogle Scholar
  14. 14.
    Hotta T, Kato T, Maeda H, Yamao H, Yamada H, Saito H (1985) Functional changes in marrow stromal cells in aplastic anaemia. Acta Haematol 74:65–69PubMedCrossRefGoogle Scholar
  15. 15.
    Wu X, Li Y, Zhu K, Wang Z, Chen S, Yang L (2007) GATA-1, −2 and −3 genes expression in bone marrow microenviroment with chronic aplastic anemia. Hematology 12:331–335PubMedCrossRefGoogle Scholar
  16. 16.
    Li J, Yang S, Lu S, Zhao H, Feng J, Li W, Ma F, Ren Q, Liu B, Zhang L, Zheng Y, Han ZC (2012) Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia. PLoS ONE 7:e47764PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Chao YH, Tsai C, Peng CT, Wu HP, Chan CK, Weng T, Wu KH (2011) Cotransplantation of umbilical cord MSCs to enhance engraftment of hematopoietic stem cells in patients with severe aplastic anemia. Bone Marrow Transplant 46:1391–1392PubMedCrossRefGoogle Scholar
  18. 18.
    Chao YH, Peng CT, Harn HJ, Chan CK, Wu KH (2010) Poor potential of proliferation and differentiation in bone marrow mesenchymal stem cells derived from children with severe aplastic anemia. Ann Hematol 89:715–723PubMedCrossRefGoogle Scholar
  19. 19.
    Chan CK, Wu KH, Lee YS, Hwang SM, Lee MS, Liao SK, Cheng EH, See LC, Tsai CN, Kuo ML, Huang JL (2012) The comparison of interleukin 6-associated immunosuppressive effects of human ESCs, fetal-type MSCs, and adult-type MSCs. Transplantation 94:132–138PubMedCrossRefGoogle Scholar
  20. 20.
    Wu KH, Chan CK, Tsai C, Chang YH, Sieber M, Chiu TH, Ho M, Peng CT, Wu HP, Huang JL (2011) Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 91:1412–1416PubMedCrossRefGoogle Scholar
  21. 21.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20PubMedCrossRefGoogle Scholar
  22. 22.
    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208PubMedCrossRefGoogle Scholar
  23. 23.
    Harris MA, Clark J, Ireland A et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261PubMedCrossRefGoogle Scholar
  24. 24.
    Sutton JF, Stacey M, Kearns WG, Rieg TS, Young NS, Liu JM (2004) Increased risk for aplastic anemia and myelodysplastic syndrome in individuals lacking glutathione S-transferase genes. Pediatr Blood Cancer 42:122–126PubMedCrossRefGoogle Scholar
  25. 25.
    Fuhrer M, Durner J, Brunnler G, Gotte H, Deppner C, Bender-Gotze C, Albert E (2007) HLA association is different in children and adults with severe acquired aplastic anemia. Pediatr Blood Cancer 48:186–191PubMedCrossRefGoogle Scholar
  26. 26.
    Watt SM, Forde SP (2008) The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang 94:18–32PubMedGoogle Scholar
  27. 27.
    Mishima S, Nagai A, Abdullah S, Matsuda C, Taketani T, Kumakura S, Shibata H, Ishikura H, Kim SU, Masuda J (2010) Effective ex vivo expansion of hematopoietic stem cells using osteoblast-differentiated mesenchymal stem cells is CXCL12 dependent. Eur J Haematol 84:538–546PubMedCrossRefGoogle Scholar
  28. 28.
    Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C, Le Bousse-Kerdiles MC (2002) Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 99:1117–1129PubMedCrossRefGoogle Scholar
  30. 30.
    Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S, Hangoc G, Shaheen M, Li X, Clapp DW (2003) Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukocyte Biol 73:630–638PubMedCrossRefGoogle Scholar
  31. 31.
    Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117:429–439PubMedCrossRefGoogle Scholar
  32. 32.
    Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638PubMedCrossRefGoogle Scholar
  33. 33.
    Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 95:9448–9453PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988PubMedCrossRefGoogle Scholar
  35. 35.
    Kiel MJ, Morrison SJ (2006) Maintaining hematopoietic stem cells in the vascular niche. Immunity 25:862–864PubMedCrossRefGoogle Scholar
  36. 36.
    Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRefGoogle Scholar
  38. 38.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Schajnovitz A, Itkin T, D'Uva G, Kalinkovich A, Golan K, Ludin A, Cohen D, Shulman Z, Avigdor A, Nagler A, Kollet O, Seger R, Lapidot T (2011) CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat Immunol 12:391–398PubMedCrossRefGoogle Scholar
  40. 40.
    Marquez-Curtis LA, Janowska-Wieczorek A (2013) Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Res Int 2013:561098PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z, Majka M (2011) Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol 39:686–696PubMedCrossRefGoogle Scholar
  42. 42.
    Cao Z, Zhang G, Wang F, Liu H, Liu L, Han Y, Zhang J, Yuan J (2013) Protective effects of mesenchymal stem cells with CXCR4 up-regulation in a rat renal transplantation model. PLoS ONE 8:e82949PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Chen W, Li M, Li Z, Yan Z, Cheng H, Pan B, Cao J, Chen C, Zeng L, Xu K (2012) CXCR4-transduced mesenchymal stem cells protect mice against graft-versus-host disease. Immunol Lett 143:161–169PubMedCrossRefGoogle Scholar
  44. 44.
    Zaim M, Karaman S, Cetin G, Isik S (2012) Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 91:1175–1186PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yu-Hua Chao
    • 1
    • 2
    • 3
  • Kang-Hsi Wu
    • 4
    • 5
  • Shiow-Her Chiou
    • 6
  • Shu-Fen Chiang
    • 6
  • Chih-Yang Huang
    • 6
  • Hsiu-Ching Yang
    • 7
  • Chin-Kan Chan
    • 8
  • Ching-Tien Peng
    • 4
    • 5
    • 9
  • Han-Ping Wu
    • 10
  • Kuan-Chih Chow
    • 7
  • Maw-Sheng Lee
    • 1
    • 11
  1. 1.Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
  2. 2.Department of PediatricsChung Shan Medical University HospitalTaichungTaiwan
  3. 3.School of MedicineChung Shan Medical UniversityTaichungTaiwan
  4. 4.Department of Hemato-oncology, Children’s Hospital, China Medical University HospitalChina Medical UniversityTaichungTaiwan
  5. 5.School of Chinese MedicineChina Medical UniversityTaichungTaiwan
  6. 6.Graduate Institute of Microbiology and Public HealthNational Chung Hsing UniversityTaichungTaiwan
  7. 7.Graduate Institute of Biomedical SciencesNational Chung Hsing UniversityTaichungTaiwan
  8. 8.Department of PediatricsTaoyuan General HospitalTaoyuanTaiwan
  9. 9.Department of Biotechnology and BioinformaticsAsia UniversityTaichungTaiwan
  10. 10.Department of PediatricsBuddhist Tzu-Chi General Hospital, Taichung BranchTaichungTaiwan
  11. 11.Department of Obstetrics and GynecologyChung Shan Medical University HospitalTaichungTaiwan

Personalised recommendations