Annals of Hematology

, Volume 93, Issue 6, pp 983–993 | Cite as

Histone deacetylase inhibitor prevents cell growth in Burkitt’s lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101

  • Ana Carolina dos Santos Ferreira
  • Marcela Cristina Robaina
  • Lídia Maria Magalhães de Rezende
  • Patricia Severino
  • Claudete Esteves KlumbEmail author
Original Article


Burkitt lymphoma (BL) is an aggressive B-cell lymphoma more common in children comprising one third of pediatric non-Hodgkin lymphoma cases. The recent discovery in BL pathogenesis highlighted the activation of PI3K pathway in cooperation with Myc in the development of BL. In this study, we demonstrated that PI3K/Akt pathway is a target to histone deacetylase inhibitor (HDACi) in BL cells. The combination of HDACi (sodium butyrate, NaB) and chemotherapy (VP-16) inhibited 51 % of the proliferation and enhanced the blockage of the cell cycle progression at G2/M with a concurrent decrease in the S phase. Microarray profiling showed a synergistic action of NaB/VP-16 combination through the differential regulation of 1,413 genes. Comparing VP-16 treatment with the NaB/VP-16 combination, 318 genes were deregulated: 250 genes were downregulated, and 68 were upregulated when compared with untreated cells. Among these genes, six (CDKN1A, CCND1, FAS, CHEK2, MDM4, and SESN2) belong to the p53-signaling pathway. The activation of this signaling pathway is usually induced by stress signals and ultimately leads to cell cycle arrest. Besides, the inhibition of the cell growth was related to reduced Akt phosphorylation, and decrease of c-Myc protein expression by about 60 % (p ≤ 0.005). Moreover, HDACi enhanced miR-101, miR-143, and miR-145 levels in BL cell line, which were inversely associated with the levels of miR-101, miR-143, and miR-145 found to be extremely downregulated in the sample of BL patients. We highlight the fact that effective combinations of HDACis with other target drugs could improve BL therapy in the future.


Burkitt’s lymphoma HDACi Cell growth PI3K miRNA 



This work was supported by grants from INCT para Controle do Câncer: CNPq 573806/2008-0/FAPERJ E26/170.026/2008 and FAPERJ E-26/111330/2011.

Conflict of interest

The authors have no financial gains to disclose.

Supplementary material

277_2014_2021_MOESM1_ESM.doc (561 kb)
Supplementary File 1 Differentially expressed genes between VP-16 treated cells and controls. Reported genes presented at least a 1.5-fold change between the two cell treatment (FDR corrected p value) (DOC 561 kb)
277_2014_2021_MOESM2_ESM.doc (768 kb)
Supplementary File 2 Differentially expressed genes between NaB treated cells and controls. Reported genes presented at least a 1.5-fold change between the two cell treatments (FDR corrected p value) (DOC 767 kb)
277_2014_2021_MOESM3_ESM.doc (1.1 mb)
Supplementary File 3 Differentially expressed genes between VP16/NaB treated cells and controls. Reported genes presented at least a 1.5-fold change between the two cell treatments (FDR corrected p value) (DOC 1087 kb)


  1. 1.
    Gross TG, Termuhlen AM (2007) Pediatric non-Hodgkin’s lymphoma. Curr Oncol Rep 9(6):459–465CrossRefPubMedGoogle Scholar
  2. 2.
    Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. doi: 10.1016/j.cell.2012.03.003 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Klapproth K, Wirth T (2010) Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 149(4):484–497. doi: 10.1111/j.1365-2141.2010.08159.x CrossRefPubMedGoogle Scholar
  4. 4.
    Meyer N, Kim SS, Penn LZ (2006) The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 16(4):275–287. doi: 10.1016/j.semcancer.2006.07.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Hecht JL, Aster JC (2000) Molecular biology of Burkitt’s lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 18(21):3707–3721Google Scholar
  6. 6.
    Klumb CE, Furtado DR, de Resende LM, Carrico MK, Coelho AM, de Meis E, Maia RC, Rumjanek FD (2003) DNA sequence profile of TP53 gene mutations in childhood B-cell non-Hodgkin’s lymphomas: prognostic implications. Eur J Haematol 71(2):81–90CrossRefPubMedGoogle Scholar
  7. 7.
    Paschos K, Parker GA, Watanatanasup E, White RE, Allday MJ (2012) BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res 40(15):7233–7246. doi: 10.1093/nar/gks391 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ (2009) Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog 5(6):e1000492. doi: 10.1371/journal.ppat.1000492 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Sander S, Calado DP, Srinivasan L, Kochert K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S, Siebert R, Bullinger L, Rajewsky K (2012) Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22(2):167–179. doi: 10.1016/j.ccr.2012.06.012 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. doi: 10.1038/nature11378 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Carnero A (2010) The PKB/AKT pathway in cancer. Curr Pharm Des 16(1):34–44CrossRefPubMedGoogle Scholar
  12. 12.
    Rasul A, Ding C, Li X, Khan M, Yi F, Ali M, Ma T (2012) Dracorhodin perchlorate inhibits PI3K/Akt and NF-kappaB activation, up-regulates the expression of p53, and enhances apoptosis. Apoptosis: Int J Programmed Cell Death 17(10):1104–1119. doi: 10.1007/s10495-012-0742-1 CrossRefGoogle Scholar
  13. 13.
    Lee KB, Byun HJ, Park SH, Park CY, Lee SH, Rho SB (2012) CYR61 controls p53 and NF-kappaB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett 315(1):86–95. doi: 10.1016/j.canlet.2011.10.016 CrossRefPubMedGoogle Scholar
  14. 14.
    Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91(5):1680–1687PubMedGoogle Scholar
  15. 15.
    de Yebenes VG, Bartolome-Izquierdo N, Ramiro AR (2013) Regulation of B-cell development and function by microRNAs. Immunol Rev 253(1):25–39. doi: 10.1111/imr.12046 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610. doi: 10.1016/j.molonc.2012.09.006 CrossRefPubMedGoogle Scholar
  17. 17.
    Dos Santos Ferreira AC, Fernandes RA, Kwee JK, Klumb CE (2012) Histone deacetylase inhibitor potentiates chemotherapy-induced apoptosis through Bim upregulation in Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 138(2):317–325. doi: 10.1007/s00432-011-1093-y CrossRefPubMedGoogle Scholar
  18. 18.
    Vasiljevic N, Wu K, Brentnall AR, Kim DC, Thorat MA, Kudahetti SC, Mao X, Xue L, Yu Y, Shaw GL, Beltran L, Lu YJ, Berney DM, Cuzick J, Lorincz AT (2011) Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing. Dis Markers 30(4):151–161. doi: 10.3233/DMA-2011-0790 CrossRefPubMedGoogle Scholar
  19. 19.
    Bader AG, Kang S, Zhao L, Vogt PK (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5(12):921–929. doi: 10.1038/nrc1753 CrossRefPubMedGoogle Scholar
  20. 20.
    Ou JN, Torrisani J, Unterberger A, Provencal N, Shikimi K, Karimi M, Ekstrom TJ, Szyf M (2007) Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem Pharmacol 73(9):1297–1307. doi: 10.1016/j.bcp.2006.12.032 CrossRefPubMedGoogle Scholar
  21. 21.
    Crump M, Coiffier B, Jacobsen ED, Sun L, Ricker JL, Xie H, Frankel SR, Randolph SS, Cheson BD (2008) Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma. Ann Oncol: Off J Eur Soc Med Oncol/ESMO 19(5):964–969. doi: 10.1093/annonc/mdn031 CrossRefGoogle Scholar
  22. 22.
    Tan J, Cang S, Ma Y, Petrillo RL, Liu D (2010) Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 3:5. doi: 10.1186/1756-8722-3-5 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C, Rizvi S (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31. doi: 10.1186/1756-8722-2-31 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Atra A, Gerrard M, Hobson R, Imeson JD, Hann IM, Pinkerton CR (2001) Outcome of relapsed or refractory childhood B-cell acute lymphoblastic leukaemia and B-cell non-Hodgkin’s lymphoma treated with the UKCCSG 9003/9002 protocols. Br J Haematol 112(4):965–968CrossRefPubMedGoogle Scholar
  25. 25.
    Cairo MS, Sposto R, Perkins SL, Meadows AT, Hoover-Regan ML, Anderson JR, Siegel SE, Lones MA, Tedeschi-Blok N, Kadin ME, Kjeldsberg CR, Wilson JF, Sanger W, Morris E, Krailo MD, Finlay JL (2003) Burkitt’s and Burkitt-like lymphoma in children and adolescents: a review of the Children’s Cancer Group experience. Br J Haematol 120(4):660–670CrossRefPubMedGoogle Scholar
  26. 26.
    Griffin TC, Weitzman S, Weinstein H, Chang M, Cairo M, Hutchison R, Shiramizu B, Wiley J, Woods D, Barnich M, Gross TG (2009) A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 52(2):177–181. doi: 10.1002/pbc.21753 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Lambert MP, Herceg Z (2008) Epigenetics and cancer, 2nd IARC meeting, Lyon, France, 6 and 7 December 2007. Mol Oncol 2(1):33–40. doi: 10.1016/j.molonc.2008.03.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Shao W, Growney JD, Feng Y, O’Connor G, Pu M, Zhu W, Yao YM, Kwon P, Fawell S, Atadja P (2010) Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: defining molecular mechanisms of resistance. Int J Cancer J Int Du Cancer 127(9):2199–2208. doi: 10.1002/ijc.25218 CrossRefGoogle Scholar
  29. 29.
    Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C, Xiao L, Faderl S, Estrov Z, Cortes J, O’Brien S, Estey E, Bueso-Ramos C, Fiorentino J, Jabbour E, Issa JP (2006) Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia. Blood 108(10):3271–3279. doi: 10.1182/blood-2006-03-009142 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Dominguez-Sola D, Dalla-Favera R (2012) Burkitt lymphoma: much more than MYC. Cancer Cell 22(2):141–142. doi: 10.1016/j.ccr.2012.07.018 CrossRefPubMedGoogle Scholar
  31. 31.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi: 10.1126/science.296.5573.1655 CrossRefPubMedGoogle Scholar
  32. 32.
    Jasek E, Lis GJ, Jasinska M, Jurkowska H, Litwin JA (2012) Effect of histone deacetylase inhibitors trichostatin A and valproic acid on etoposide-induced apoptosis in leukemia cells. Anticancer Res 32(7):2791–2799PubMedGoogle Scholar
  33. 33.
    Guan H, Xie L, Klapproth K, Weitzer CD, Wirth T, Ushmorov A (2013) Decitabine represses translocated MYC oncogene in Burkitt lymphoma. J Pathol 229(5):775–783. doi: 10.1002/path.4164 CrossRefPubMedGoogle Scholar
  34. 34.
    Milutinovic S, D’Alessio AC, Detich N, Szyf M (2007) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28(3):560–571. doi: 10.1093/carcin/bgl167 PubMedGoogle Scholar
  35. 35.
    Schwartz B, Avivi-Green C, Polak-Charcon S (1998) Sodium butyrate induces retinoblastoma protein dephosphorylation, p16 expression and growth arrest of colon cancer cells. Mol Cell Biochem 188(1–2):21–30CrossRefPubMedGoogle Scholar
  36. 36.
    Sanchez-Beato M, Sanchez-Aguilera A, Piris MA (2003) Cell cycle deregulation in B-cell lymphomas. Blood 101(4):1220–1235. doi: 10.1182/blood-2002-07-2009 CrossRefPubMedGoogle Scholar
  37. 37.
    Iio A, Nakagawa Y, Hirata I, Naoe T, Akao Y (2010) Identification of non-coding RNAs embracing microRNA-143/145 cluster. Mol Cancer 9:136. doi: 10.1186/1476-4598-9-136 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Di Lisio L, Sanchez-Beato M, Gomez-Lopez G, Rodriguez ME, Montes-Moreno S, Mollejo M, Menarguez J, Martinez MA, Alves FJ, Pisano DG, Piris MA, Martinez N (2012) MicroRNA signatures in B-cell lymphomas. Blood Cancer J 2(2):e57. doi: 10.1038/bcj.2012.1 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, Nakashima R, Kitade Y, Naoe T (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 17(6):398–408. doi: 10.1038/cgt.2009.88 CrossRefPubMedGoogle Scholar
  40. 40.
    Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98(12):1914–1920. doi: 10.1111/j.1349-7006.2007.00618.x CrossRefPubMedGoogle Scholar
  41. 41.
    Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106(9):3207–3212. doi: 10.1073/pnas.0808042106 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH, Xu HC, Xu X, Tang D, Zheng XF, Xue YP, Huang GC, Sun WH (2012) Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 279(22):4201–4212. doi: 10.1111/febs.12013 CrossRefPubMedGoogle Scholar
  43. 43.
    Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46(12):2295–2303. doi: 10.1016/j.ejca.2010.05.012 CrossRefPubMedGoogle Scholar
  44. 44.
    Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM, Noske DP, Tannous BA, Wurdinger T (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1(8):710–720PubMedCentralPubMedGoogle Scholar
  45. 45.
    Cho HM, Jeon HS, Lee SY, Jeong KJ, Park SY, Lee HY, Lee JU, Kim JH, Kwon SJ, Choi E, Na MJ, Kang J, Son JW (2011) microRNA-101 inhibits lung cancer invasion through the regulation of enhancer of zeste homolog 2. Exp Ther Med 2(5):963–967. doi: 10.3892/etm.2011.284 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. doi: 10.1038/ng.2007.30 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Robertus JL, Kluiver J, Weggemans C, Harms G, Reijmers RM, Swart Y, Kok K, Rosati S, Schuuring E, van Imhoff G, Pals ST, Kluin P, van den Berg A (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149(6):896–899. doi: 10.1111/j.1365-2141.2010.08111.x CrossRefPubMedGoogle Scholar
  48. 48.
    Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R (2010) Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31(4):745–750. doi: 10.1093/carcin/bgq033 CrossRefPubMedGoogle Scholar
  49. 49.
    Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernandez-Piqueras J, Malumbres M (2008) Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13(6):496–506. doi: 10.1016/j.ccr.2008.04.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ana Carolina dos Santos Ferreira
    • 1
  • Marcela Cristina Robaina
    • 1
  • Lídia Maria Magalhães de Rezende
    • 2
  • Patricia Severino
    • 3
  • Claudete Esteves Klumb
    • 1
    • 4
    Email author
  1. 1.Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação Geral Técnico-CientíficaInstituto Nacional de Câncer-INCARio de JaneiroBrazil
  2. 2.Divisão de PatologiaInstituto Nacional de Câncer-INCARio de JaneiroBrazil
  3. 3.Instituto Israelita de Ensino e Pesquisa Albert EinsteinHospital Israelita Albert EinsteinSão PauloBrazil
  4. 4.Laboratório de Hemato-Oncologia Celular e Molecular; Programa de Pesquisa em Hemato-Oncologia Molecular; CGTCInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations