Annals of Hematology

, Volume 92, Issue 11, pp 1439–1450 | Cite as

MicroRNAs mark in the MLL-rearranged leukemia

Review Article

Abstract

MicroRNAs are short noncoding RNAs, known regulators of several signaling pathways cell differentiation and proliferation, development, and apoptosis, which are deregulated in acute leukemia. Mixed lineage leukemia (MLL) gene encodes a protein with histone methyltransferase activity, which is essential for the fine tuning of hematopoietic stem cell development and differentiation through the regulation of HOXA and MEIS1. MLL gene rearrangements characterize both acute myeloid and acute lymphoblastic leukemia associated with poor outcomes. MicroRNAs and MLL rearrangements are in tight association regulating each other expression, affecting cell cycle regulators, and composing complex networks with factors involved in leukemogenesis such as MYC and FLT3. MLL fusion genes are also capable of recruiting DNA methyltransferases at microRNAs promoters controlling their expression through epigenetic changes. Direct drug targeting of MLL has been difficult to achieve, and in this context, microRNA expression modulation represents an attractive approach.

Keywords

MicroRNAs MLL AML ALL Methylation Histone methyltransferase 

References

  1. 1.
    Zhou H, Hu H, Lai M (2010) Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell 102:645–655PubMedCrossRefGoogle Scholar
  2. 2.
    Röther S, Meister G (2011) Small RNAs derived from longer non-coding RNAs. Biochimie 93:1905–1915PubMedCrossRefGoogle Scholar
  3. 3.
    Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103PubMedCrossRefGoogle Scholar
  4. 4.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  5. 5.
    Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903PubMedCrossRefGoogle Scholar
  6. 6.
    Maurin T, Cazalla D, Yang JS, Bortolamiol-Becet D, Lai EC (2012) RNase III-independent microRNA biogenesis in mammalian cells. RNA 18:2166–2173PubMedCrossRefGoogle Scholar
  7. 7.
    Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE (2012) Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486:541–544PubMedGoogle Scholar
  8. 8.
    Xhemalce B, Robson SC, Kouzarides T (2012) Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151:278–288PubMedCrossRefGoogle Scholar
  9. 9.
    Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCrossRefGoogle Scholar
  10. 10.
    Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609PubMedCrossRefGoogle Scholar
  11. 11.
    Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E (2012) Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer. doi:10.1002/ijc.27859 PubMedGoogle Scholar
  12. 12.
    Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799:694–701PubMedCrossRefGoogle Scholar
  13. 13.
    Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240PubMedCrossRefGoogle Scholar
  14. 14.
    Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237PubMedCrossRefGoogle Scholar
  15. 15.
    Fukaya T, Tomari Y. (2012) MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol Cell 48:825–836Google Scholar
  16. 16.
    Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151:533–546PubMedCrossRefGoogle Scholar
  17. 17.
    Rüegger S, Großhans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37:436–346PubMedCrossRefGoogle Scholar
  18. 18.
    Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263PubMedCrossRefGoogle Scholar
  19. 19.
    Leonardo TR, Schultheisz HL, Loring JF, Laurent LC (2012) The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 14:1114–1121PubMedCrossRefGoogle Scholar
  20. 20.
    Li MA, He L (2012) microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays 34:670–680PubMedCrossRefGoogle Scholar
  21. 21.
    Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13:e249–e258PubMedCrossRefGoogle Scholar
  22. 22.
    Nair VS, Maeda LS, Ioannidis JP (2012) Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst 104:528–540PubMedCrossRefGoogle Scholar
  23. 23.
    Chen PS, Su JL, Hung MC (2012) Dysregulation of microRNAs in cancer. J Biomed Sci 19:90PubMedCrossRefGoogle Scholar
  24. 24.
    Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15:1443–1461PubMedCrossRefGoogle Scholar
  25. 25.
    Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao H, Wang D, Du W, Gu D, Yang R (2010) MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 74:149–155PubMedCrossRefGoogle Scholar
  27. 27.
    Navarro F, Lieberman J (2010) Small RNAs guide hematopoietic cell differentiation and function. J Immunol 184:5939–5947PubMedCrossRefGoogle Scholar
  28. 28.
    Pfaff N, Moritz T, Thum T, Cantz T (2012) miRNAs involved in the generation, maintenance, and differentiation of pluripotent cells. J Mol Med (Berl) 90:747–752CrossRefGoogle Scholar
  29. 29.
    El Gazzar M, McCall CE (2012) MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol Cell Biol 90:587–593PubMedCrossRefGoogle Scholar
  30. 30.
    O'Connell RM, Zhao JL, Rao DS (2011) MicroRNA function in myeloid biology. Blood 118:2960–2969PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang L, Sankaran VG, Lodish HF (2012) MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia 26:2310–2316PubMedCrossRefGoogle Scholar
  32. 32.
    Schotte D, Pieters R, Den Boer ML (2012) MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 26:1–12PubMedCrossRefGoogle Scholar
  33. 33.
    Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD (2011) The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117:1121–1129PubMedCrossRefGoogle Scholar
  34. 34.
    Benetatos L, Vartholomatos G (2012) Deregulated microRNAs in multiple myeloma. Cancer 118:878–887PubMedCrossRefGoogle Scholar
  35. 35.
    Ward BP, Tsongalis GJ, Kaur P (2011) MicroRNAs in chronic lymphocytic leukemia. Exp Mol Pathol 90:173–178PubMedCrossRefGoogle Scholar
  36. 36.
    Lawrie CH (2012) MicroRNAs and lymphomagenesis: a functional review. Br J Haematol. doi:10.1111/bjh.12157 PubMedGoogle Scholar
  37. 37.
    Cosgrove MS, Patel A (2010) Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J 277:1832–1842PubMedCrossRefGoogle Scholar
  38. 38.
    Ansari KI, Mandal SS (2010) Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J 277:1790–1804PubMedCrossRefGoogle Scholar
  39. 39.
    Uribesalgo I, Di Croce L (2011) Dynamics of epigenetic modifications in leukemia. Brief Funct Genomics 10:18–29PubMedCrossRefGoogle Scholar
  40. 40.
    Bertani S, Sauer S, Bolotin E, Sauer F (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43:1040–1046PubMedCrossRefGoogle Scholar
  41. 41.
    Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124PubMedCrossRefGoogle Scholar
  42. 42.
    Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM, Chang HY, Shurtleff SA, Downing JR, Cleary ML (2009) Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4:129–140PubMedCrossRefGoogle Scholar
  43. 43.
    Liu H, Cheng EH, Hsieh JJ (2009) MLL fusions: pathways to leukemia. Cancer Biol Ther 8:1204–1211PubMedCrossRefGoogle Scholar
  44. 44.
    Slany RK (2009) The molecular biology of mixed lineage leukemia. Haematologica 94:984–993PubMedCrossRefGoogle Scholar
  45. 45.
    Cerveira N, Bizarro S, Teixeira MR (2011) MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem 392:713–724PubMedCrossRefGoogle Scholar
  46. 46.
    Marcucci G, Haferlach T, Döhner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29:475–486PubMedCrossRefGoogle Scholar
  47. 47.
    Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F, Schmid C, Wendtner CM, Staib P, Serve H, Kreuzer KA, Kern W, Haferlach T, Haferlach C (2012) A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 120:2963–2972PubMedCrossRefGoogle Scholar
  48. 48.
    Cerveira N, Lisboa S, Correia C, Bizarro S, Santos J, Torres L, Vieira J, Barros-Silva JD, Pereira D, Moreira C, Meyer C, Oliva T, Moreira I, Martins Â, Viterbo L, Costa V, Marschalek R, Pinto A, Mariz JM, Teixeira MR (2012) Genetic and clinical characterization of 45 acute leukemia patients with MLL gene rearrangements from a single institution. Mol Oncol 6:553–564PubMedCrossRefGoogle Scholar
  49. 49.
    Guenther MG, Jenner RG, Chevalier B, Nakamura T, Croce CM, Canaani E, Young RA (2005) Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci U S A 102:8603–8608PubMedCrossRefGoogle Scholar
  50. 50.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  51. 51.
    de Oliveira JC, Brassesco MS, Scrideli CA, Tone LG, Narendran A (2012) MicroRNA expression and activity in pediatric acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer 59:599–604PubMedCrossRefGoogle Scholar
  52. 52.
    Arnold CP, Tan R, Zhou B, Yue SB, Schaffert S, Biggs JR, Doyonnas R, Lo MC, Perry JM, Renault VM, Sacco A, Somervaille T, Viatour P, Brunet A, Cleary ML, Li L, Sage J, Zhang DE, Blau HM, Chen C, Chen CZ (2011) MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Res 21:798–810PubMedCrossRefGoogle Scholar
  53. 53.
    Nakamura T, Canaani E, Croce CM (2007) Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci U S A 104:10980–10985PubMedCrossRefGoogle Scholar
  54. 54.
    Harnprasopwat R, Ha D, Toyoshima T, Lodish H, Tojo A, Kotani A (2010) Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. Biochem Biophys Res Commun 399:117–122PubMedCrossRefGoogle Scholar
  55. 55.
    Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2010) A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle 9:1037–1042PubMedCrossRefGoogle Scholar
  56. 56.
    Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2009) miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114:4169–4178PubMedCrossRefGoogle Scholar
  57. 57.
    Dou L, Zheng D, Li J, Li Y, Gao L, Wang L, Yu L (2012) Methylation-mediated repression of microRNA-143 enhances MLL-AF4oncogene expression. Oncogene 31:507–517PubMedCrossRefGoogle Scholar
  58. 58.
    Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX, Marquez VE, Pieters R, den Boer ML, Stam RW (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25:429–439PubMedCrossRefGoogle Scholar
  59. 59.
    Nishi M, Eguchi-Ishimae M, Wu Z, Gao W, Iwabuki H, Kawakami S, Tauchi H, Inukai T, Sugita K, Hamasaki Y, Ishii E, Eguchi M (2012) Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia. doi:10.1038/leu.2012.242 PubMedGoogle Scholar
  60. 60.
    Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH, Broekhuis MJ, Peters TC, Pieters R, den Boer ML (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23:313–322PubMedCrossRefGoogle Scholar
  61. 61.
    Schotte D, Lange-Turenhout EA, Stumpel DJ, Stam RW, Buijs-Gladdines JG, Meijerink JP, Pieters R, Den Boer ML (2010) Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica 95:1675–1682PubMedCrossRefGoogle Scholar
  62. 62.
    Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R, Den Boer ML (2011) MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 96:703–711PubMedCrossRefGoogle Scholar
  63. 63.
    Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822PubMedCrossRefGoogle Scholar
  64. 64.
    Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA, Lund EA, Sam TN, Kersey JH (2008) Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 13:432–440PubMedCrossRefGoogle Scholar
  65. 65.
    Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, Wang Y, Qian Z, Jin J, Zhang Y, Bohlander SK, Le Beau MM, Larson RA, Golub TR, Rowley JD, Chen J (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 104:19971–19976PubMedCrossRefGoogle Scholar
  66. 66.
    Chandra P, Luthra R, Zuo Z, Yao H, Ravandi F, Reddy N, Garcia-Manero G, Kantarjian H, Jones D (2010) Acute myeloid leukemia with t(9;11)(p21-22;q23): common properties of dysregulated ras pathway signaling and genomic progression characterize de novo and therapy-related cases. Am J Clin Pathol 133:686–693PubMedCrossRefGoogle Scholar
  67. 67.
    Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z, Neilly MB, Jin J, Zhang Y, Bohlander SK, Zhang DE, Larson RA, Le Beau MM, Thirman MJ, Golub TR, Rowley JD, Chen J (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 105:15535–15540PubMedCrossRefGoogle Scholar
  68. 68.
    Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A, Lu J, Pelloso LA, Wunderlich M, Huang H, Luo RT, Sun M, He M, Neilly MB, Zeleznik-Le NJ, Thirman MJ, Mulloy JC, Liu PP, Rowley JD, Chen J (2010) Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci U S A 107:3710–3715PubMedCrossRefGoogle Scholar
  69. 69.
    Li Z, Luo RT, Mi S, Sun M, Chen P, Bao J, Neilly MB, Jayathilaka N, Johnson DS, Wang L, Lavau C, Zhang Y, Tseng C, Zhang X, Wang J, Yu J, Yang H, Wang SM, Rowley JD, Chen J, Thirman MJ (2009) Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res 69:1109–1116PubMedCrossRefGoogle Scholar
  70. 70.
    Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, Chen P, He C, You D, Zhang S, Wang J, Arnovitz S, Elkahloun A, Price C, Hong GM, Ren H, Kunjamma RB, Neilly MB, Matthews JM, Xu M, Larson RA, Le Beau MM, Slany RK, Liu PP, Lu J, Zhang J, He C, Chen J (2012) Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 22:524–535PubMedCrossRefGoogle Scholar
  71. 71.
    Danen-van Oorschot AA, Kuipers JE, Arentsen-Peters S, Schotte D, de Haas V, Trka J, Baruchel A, Reinhardt D, Pieters R, Zwaan CM, van den Heuvel-Eibrink MM (2012) Differentially expressed miRNAs in cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Pediatr Blood Cancer 58:715–721PubMedCrossRefGoogle Scholar
  72. 72.
    Li Z, Huang H, Chen P, He M, Li Y, Arnovitz S, Jiang X, He C, Hyjek E, Zhang J, Zhang Z, Elkahloun A, Cao D, Shen C, Wunderlich M, Wang Y, Neilly MB, Jin J, Wei M, Lu J, Valk PJ, Delwel R, Lowenberg B, Le Beau MM, Vardiman J, Mulloy JC, Zeleznik-Le NJ, Liu PP, Zhang J, Chen J (2012) miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun 3:688PubMedCrossRefGoogle Scholar
  73. 73.
    Jiang X, Huang H, Li Z, He C, Li Y, Chen P, Gurbuxani S, Arnovitz S, Hong GM, Price C, Ren H, Kunjamma RB, Neilly MB, Salat J, Wunderlich M, Slany RK, Zhang Y, Larson RA, Le Beau MM, Mulloy JC, Rowley JD, Chen J (2012) miR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia. Proc Natl Acad Sci U S A 109:19397–19402PubMedCrossRefGoogle Scholar
  74. 74.
    Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M, Yasuda J, Kawai J, Hayashizaki Y, Hume DA, Suzuki H (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24:460–466PubMedCrossRefGoogle Scholar
  75. 75.
    Wang XS, Gong JN, Yu J, Wang F, Zhang XH, Yin XL, Tan ZQ, Luo ZM, Yang GH, Shen C, Zhang JW (2012) MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia. Blood 19:4992–5004CrossRefGoogle Scholar
  76. 76.
    Xiong Y, Li Z, Ji M, Tan AC, Bemis J, Tse JV, Huang G, Park J, Ji C, Chen J, Bemis LT, Bunting KD, Tse W (2011) MIR29B regulates expression of MLLT11 (AF1Q), an MLL fusion partner, and low MIR29B expression associates with adverse cytogenetics and poor overall survival in AML. Br J Haematol 153:753–757PubMedCrossRefGoogle Scholar
  77. 77.
    Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C (2008) MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol 28:4609–4619PubMedCrossRefGoogle Scholar
  78. 78.
    Whitman SP, Caligiuri MA, Maharry K, Radmacher MD, Kohlschmidt J, Becker H, Mrózek K, Wu YZ, Schwind S, Metzeler KH, Mendler JH, Wen J, Baer MR, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Larson RA, Marcucci G, Bloomfield CD (2012) The MLL partial tandem duplication in adults aged 60 years and older with de novo cytogenetically normal acute myeloid leukemia. Leukemia 26:1713–1717PubMedCrossRefGoogle Scholar
  79. 79.
    Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111:3183–3189PubMedCrossRefGoogle Scholar
  80. 80.
    Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113:3314–3322PubMedCrossRefGoogle Scholar
  81. 81.
    Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, Chen CZ, Cleary ML (2010) The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70:3833–3842PubMedCrossRefGoogle Scholar
  82. 82.
    Chen J, Odenike O, Rowley JD (2010) Leukaemogenesis: more than mutant genes. Nat Rev Cancer 10:23–36PubMedCrossRefGoogle Scholar
  83. 83.
    Bernt KM, Armstrong SA (2011) Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am Soc Hematol Educ Program 2011:354–360PubMedCrossRefGoogle Scholar
  84. 84.
    Liedtke M, Cleary ML (2009) Therapeutic targeting of MLL. Blood 113:6061–6068PubMedCrossRefGoogle Scholar
  85. 85.
    Shi A, Murai MJ, He S, Lund G, Hartley T, Purohit T, Reddy G, Chruszcz M, Grembecka J, Cierpicki T (2012) Structural insights into inhibition of the bivalent menin–MLL interaction by small molecules in leukemia. Blood 20:4461–4469CrossRefGoogle Scholar
  86. 86.
    Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478:529–533PubMedCrossRefGoogle Scholar
  87. 87.
    Senisterra G, Wu H, Allali-Hassani A, Wasney GA, Barsyte-Lovejoy D, Dombrovski L, Dong A, Nguyen KT, Smil D, Bolshan Y, Hajian T, He H, Seitova A, Chau I, Li F, Poda G, Couture JF, Brown PJ, Al-Awar R, Schapira M, Arrowsmith CH, Vedadi M (2013) Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem J 449:151–159PubMedCrossRefGoogle Scholar
  88. 88.
    Murray MY, Rushworth SA, MacEwan DJ (2012) Micro RNAs as a new therapeutic target towards leukaemia signalling. Cell Signal 24:363–368PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Blood BankGeneral Hospital of PrevezaPrevezaGreece
  2. 2.Molecular Biology LaboratoryUniversity Hospital of IoanninaIoanninaGreece

Personalised recommendations