Advertisement

Annals of Hematology

, Volume 92, Issue 10, pp 1397–1403 | Cite as

Combination of fludarabine, amsacrine, and cytarabine followed by reduced-intensity conditioning and allogeneic hematopoietic stem cell transplantation in patients with high-risk acute myeloid leukemia

  • Marta KrejciEmail author
  • Michael Doubek
  • Jaroslav Dusek
  • Yvona Brychtova
  • Zdenek Racil
  • Milan Navratil
  • Miroslav Tomiska
  • Ondrej Horky
  • Sarka Pospisilova
  • Jiri Mayer
Original Article

Abstract

Sequential use of chemotherapy and reduced-intensity conditioning (RIC) with allogeneic stem cell transplantation (SCT) has been proposed to improve the treatment outcomes in patients with high-risk acute myeloid leukemia (AML). Here, we present our experience with this procedure in a cohort of 60 AML patients with primary induction failure (n = 9); early, refractory, or ≥ second relapse (n = 41); or unfavorable cytogenetics (n = 10). A combination of fludarabine (30 mg/m2/day), cytarabine (2 g/m2/day), and amsacrine (100 mg/m2/day) for 4 days was used. After 3 days of rest, RIC was carried out, consisting of 4 Gy total body irradiation, antithymocyte globulin (ATG-Fresenius), and cyclophosphamide (fludarabine, amsacrine, and cytarabine (FLAMSA)-RIC protocol). Prophylactic donor lymphocyte infusions (pDLIs) were given in patients with complete remission (CR) and without evidence of graft-versus-host disease ≥120 days after SCT. The median time of neutrophil engraftment was 17 days. CR was achieved in 47 of 60 patients (78 %). Eleven patients received pDLIs resulting in long-term CR in eight of them. Non-relapse mortality after 1 and 3 years was 25 and 28 %, respectively. With a median follow-up of 37 months (range, 10–69), 3-year overall survival and 3-year progression-free survival were 42 and 33 %, respectively. In a multivariate analysis, dose of CD34(+) cells >5 × 106/kg (p = 0.005; hazard ratio (HR) = 0.276), remission of AML before SCT (p = 0.044; HR = 0.421), and achievement of complete chimerism after SCT (p = 0.001; HR = 0.205) were significant factors of better overall survival. The use of the FLAMSA-RIC protocol in suitable high-risk AML patients results in a long-term survival rate of over 40 %.

Keywords

Acute myeloid leukemia Reduced-intensity conditioning Fludarabine Cytarabine Amsacrine Allogeneic transplantation 

Notes

Acknowledgments

The work was supported in part by Research Grants MSMT CR CZ.1.05/1.1.00/02.0068 (CEITEC), MSMT CR CZ.1.07/2.3.00/20.0045 (SuPReMMe), and by the Czech Leukemia Study Group – for Life (CELL), and by MH CZ – DRO (FNBr, 65269705).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Lowenberg B, Downing J, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051–1062PubMedCrossRefGoogle Scholar
  2. 2.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European Leukemia Net. Blood 115:453–474PubMedCrossRefGoogle Scholar
  3. 3.
    Schmid C, Schleuning M, Ledderose G et al (2005) Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23:5675–5687PubMedCrossRefGoogle Scholar
  4. 4.
    Schmid C, Schleuning M, Schwerdtfeger R et al (2006) Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 108:1092–1099PubMedCrossRefGoogle Scholar
  5. 5.
    Slovak ML, Kopecky KJ, Kassileth PA et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083PubMedGoogle Scholar
  6. 6.
    Zittoun RA, Mandelli F, Willemze R, de Witte T, Labar B, Resegotti L et al (1995) Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) Leukemia Cooperative Groups. N Engl J Med 332:217–223PubMedCrossRefGoogle Scholar
  7. 7.
    Chemnitz JM, von Lilienfeld-Toal M, Holtick U, Theurich S, Shimabukuro-Vornhagen A et al (2012) Intermediate intensity conditioning regimen containing FLAMSA, treosulfan, cyclophosphamide, and ATG for allogeneic stem cell transplantation in elderly patients with relapsed or high-risk acute myeloid leukemia. Ann Hematol 91:47–55PubMedCrossRefGoogle Scholar
  8. 8.
    Martino R, Caballero MD, Simon JA, Canals C, Solano C, Urbano-Ispizua A et al (2002) Evidence for a graft-versus-leukemia effect after allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning in acute myelogenous leukemia and myelodysplastic syndromes. Blood 100:2243–2245PubMedCrossRefGoogle Scholar
  9. 9.
    Bertz H, Potthoff K, Finke J (2003) Allogeneic stem-cell transplantation from related and unrelated donors in older patients with myeloid leukemia. J Clin Oncol 21:1480–1484PubMedCrossRefGoogle Scholar
  10. 10.
    Stelljes M, Bornhauser M, Kroger M, Beyer J, Sauerland MC, Heinecke A et al (2005) Conditioning with 8-Gy total body irradiation and fludarabine for allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Blood 106:3314–3321PubMedCrossRefGoogle Scholar
  11. 11.
    Schmid C, Schleuning M, Hentrich M, Markl GE, Gerbitz A, Tischer J et al (2008) High antileukemic efficacy of an intermediate intensity conditioning regimen for allogeneic stem cell transplantation in patients with high-risk acute myeloid leukemia in first complete remission. Bone Marrow Transplant 41:721–727PubMedCrossRefGoogle Scholar
  12. 12.
    Krüger WH, Bohlius J, Cornely OA, Einsele H, Hebart H, Massenkeil G et al (2005) Antimicrobial prophylaxis in allogeneic bone marrow transplantation. Guidelines of the Infectious Disease Working Party (AGIHO) of the German Society of Haematology and Oncology. Ann Oncol 16:1381–1390PubMedCrossRefGoogle Scholar
  13. 13.
    Sorror ML, Maris MB, Strob E, Baron F, Sandmaier BM, Maloney DG et al (2005) Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106:2912–2919PubMedCrossRefGoogle Scholar
  14. 14.
    Przepiorka D, Weisdorf D, Martin P et al (1995) Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 15:825–828PubMedGoogle Scholar
  15. 15.
    Shulman HM, Sullivan KM, Weiden PL et al (1980) Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 60:204–217CrossRefGoogle Scholar
  16. 16.
    Lion T (2003) Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 17:232–254CrossRefGoogle Scholar
  17. 17.
    Horky O, Mayer J, Kablaskova L, Razga F, Krejci M, Kissova J et al (2011) Increasing hematopoietic microchimerism is a reliable indicator of incipient AML relapse. Int J Hematol 33:57–66CrossRefGoogle Scholar
  18. 18.
    Barret A, Savani BN (2006) Stem cell transplantation with reduced-intensity conditioning regimens: a review of ten years experience with new transplant concepts and new therapeutic agents. Leukemia 20:1661–1672CrossRefGoogle Scholar
  19. 19.
    Finke J, Bethge WA, Schmoor C et al (2009) Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomized, open-label, multicentre phase 3 trial. Lancet Oncol 10:855–864PubMedCrossRefGoogle Scholar
  20. 20.
    Luger SM, Rinden O, Zhang MJ, Perez WS, Bishop MR, Bornhauser M et al (2012) Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant 47:203–211PubMedCrossRefGoogle Scholar
  21. 21.
    Ljungman P, Bregni M, Brune M, Cornelissen J, de Witte T, Dini G et al (2010) Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009. Bone Marrow Transplant 45:219–234PubMedCrossRefGoogle Scholar
  22. 22.
    Gratwohl A (2012) The EBMT risk score. Bone Marrow Transplant 47:749–756PubMedCrossRefGoogle Scholar
  23. 23.
    Lee SJ, Kang BW, Moon JH, Chae YS, Kim JG, Jung JS et al (2012) Comparable analysis of outcomes for allogeneic peripheral blood stem cell transplantation from matched related and matched unrelated donors in acute myeloid leukemia. Acta Haematol 127:81–89PubMedCrossRefGoogle Scholar
  24. 24.
    Barone F, Sandmaier BM (2006) Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Leukemia 20:1690–1700CrossRefGoogle Scholar
  25. 25.
    Perez-Simon JA, Caballero D, Diez-Campelo M, Lopez-Perez R, Mateos G et al (2002) Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 16:1423–1431PubMedCrossRefGoogle Scholar
  26. 26.
    Holtan SG, Hogan WJ, Elliot MA, Ansell SM, Inwards DJ et al (2010) CD34(+) cell dose and establishment of full donor chimerism at day +100 are important factors for survival with reduced-intensity conditioning with fludarabine and melphalan before allogeneic hematopoietic SCT for hematologic malignancies. Bone Marrow Transplant 45:1699–1703PubMedCrossRefGoogle Scholar
  27. 27.
    Lee SH, Lee MH, Lee JH et al (2005) Infused CD34+ cell dose predicts long-term survival in acute myelogenous leukemia patients who received allogeneic bone marrow transplantation from matched sibling donors in first complete remission. Biol Blood Marrow Transplant 11:122–128PubMedCrossRefGoogle Scholar
  28. 28.
    Tsirigotis P, Shapira MY, Or R, Bitan M, Samuel S et al (2010) The number of infused CD34+ cells does not influence the incidence of GVHD or outcome of allogeneic PBSC transplantation, using reduced-intensity conditioning and antithymocyte globulin. Bone Marrow Transplant 45:1189–1196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marta Krejci
    • 1
    Email author
  • Michael Doubek
    • 1
    • 2
  • Jaroslav Dusek
    • 3
  • Yvona Brychtova
    • 1
  • Zdenek Racil
    • 1
  • Milan Navratil
    • 1
  • Miroslav Tomiska
    • 1
  • Ondrej Horky
    • 1
  • Sarka Pospisilova
    • 1
    • 2
  • Jiri Mayer
    • 1
    • 2
  1. 1.Department of Internal Medicine, Hematology and OncologyUniversity Hospital Brno and Masaryk UniversityBrnoCzech Republic
  2. 2.Central European Institute of TechnologyMasaryk University BrnoBrnoCzech Republic
  3. 3.Institute of Biostatistics and AnalysesMasaryk UniversityBrnoCzech Republic

Personalised recommendations