Annals of Hematology

, Volume 92, Issue 8, pp 1057–1062 | Cite as

Polymorphisms of the IL-23R gene are associated with primary immune thrombocytopenia but not with the clinical outcome of pulsed high-dose dexamethasone therapy

Original Article


Primary immune thrombocytopenia (ITP) is an autoimmune heterogeneous disorder that is characterized by decreased platelet count. The interleukin-23 receptor (IL-23R) has been identified as a susceptibility gene for the development of multiple autoimmune diseases. To investigate the possible association of IL-23R gene single-nucleotide polymorphisms (SNPs) with ITP and the association with the clinical outcome of pulsed high-dose dexamethasone (HD-DXM) therapy, four SNPs in the IL-23R gene, rs10889677, rs1884444, rs7517847, and rs11209032, were tested in a cohort of 75 ITP subjects and 81 controls by direct sequencing. IL-23R rs1884444 GT/TT variant genotypes were observed to be associated with significantly increased risk of ITP as compared with controls (GT/TT vs. GG: odds ratio (OR) 2.776, 95 % confidence intervals (CI) 1.086–7.090, p = 0.028). However, other three SNPs revealed no statistically significant differences between patients and controls (rs10889677 CA/AA vs. CC: OR 2.200, 95 % CI 0.727–6.661, p = 0.155; rs11209032 GA/AA vs. GG: OR 0.747, 95 % CI 0.379–1.472, p = 0.399; rs7517847 TG/GG vs. TT: OR 1.031, 95 % CI 0.544–1.956, p = 0.925). Furthermore, IL-23R SNPs revealed no association with clinical outcome of HD-DXM therapy. This study suggests that polymorphism in the IL-23R gene, rs1884444, indicates a significant association with susceptibility to ITP in a recessive genetic model but does not have association with the clinical outcome of HD-DXM therapy.


IL-23 receptor Single-nucleotide polymorphism High-dose dexamethasone Primary immune thrombocytopenia 



The project was supported by grants from National Natural Science Foundation of China (30972737 and 81170473). Pujiang Talents Project Funding (09PJ1402500).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    McMillan R (2007) The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol 44:S3–S11PubMedCrossRefGoogle Scholar
  2. 2.
    Semple JW, Milev Y, Cosgrave D, Mody M, Hornstein A, Blanchette V, Freedman J (1996) Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura: relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood 87:4245–4254PubMedGoogle Scholar
  3. 3.
    Yu J, Heck S, Patel V, Levan J, Yu Y, Bussel JB, Yazdanbakhsh K (2008) Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 112:1325–1328PubMedCrossRefGoogle Scholar
  4. 4.
    Olsson B, Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LM, Wadenvik H (2003) T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 9:1123–1124PubMedCrossRefGoogle Scholar
  5. 5.
    Xueyi L, Lina C, Zhenbiao W, Qing H, Qiang L, Zhu P (2013) Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-alpha therapy. J Clin Immunol 33:151–161PubMedCrossRefGoogle Scholar
  6. 6.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRefGoogle Scholar
  7. 7.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal MR, Moore KW (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708PubMedGoogle Scholar
  8. 8.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240PubMedCrossRefGoogle Scholar
  9. 9.
    Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E, Soumelis V (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657PubMedCrossRefGoogle Scholar
  10. 10.
    Chen Z, Laurence A, O’Shea JJ (2007) Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol 19:400–408PubMedCrossRefGoogle Scholar
  11. 11.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK (2012) Induction and molecular signature of pathogenic T(H)17 cells. Nat Immunol 13:991–999PubMedCrossRefGoogle Scholar
  12. 12.
    Ji L, Zhan Y, Hua F, Li F, Zou S, Wang W, Song D, Min Z, Chen H, Cheng Y (2012) The ratio of Treg/Th17 cells correlates with the disease activity of primary immune thrombocytopenia. PLoS One 7:e50909PubMedCrossRefGoogle Scholar
  13. 13.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463PubMedCrossRefGoogle Scholar
  14. 14.
    Rueda B, Orozco G, Raya E, Fernandez-Sueiro JL, Mulero J, Blanco FJ, Vilches C, Gonzalez-Gay MA, Martin J (2008) The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann Rheum Dis 67:1451–1454PubMedCrossRefGoogle Scholar
  15. 15.
    Nair RP, Ruether A, Stuart PE, Jenisch S, Tejasvi T, Hiremagalore R, Schreiber S, Kabelitz D, Lim HW, Voorhees JJ, Christophers E, Elder JT, Weichenthal M (2008) Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J Invest Dermatol 128:1653–1661PubMedCrossRefGoogle Scholar
  16. 16.
    Farago B, Magyari L, Safrany E, Csongei V, Jaromi L, Horvatovich K, Sipeky C, Maasz A, Radics J, Gyetvai A, Szekanecz Z, Czirjak L, Melegh B (2008) Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann Rheum Dis 67:248–250PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng Y, Wong RS, Soo YO, Chui CH, Lau FY, Chan NP, Wong WS, Cheng G (2003) Initial treatment of immune thrombocytopenic purpura with high-dose dexamethasone. N Engl J Med 349:831–836PubMedCrossRefGoogle Scholar
  18. 18.
    Guo C, Chu X, Shi Y, He W, Li L, Wang L, Wang Y, Peng J, Hou M (2007) Correction of Th1-dominant cytokine profiles by high-dose dexamethasone in patients with chronic idiopathic thrombocytopenic purpura. J Clin Immunol 27:557–562PubMedCrossRefGoogle Scholar
  19. 19.
    Shan NN, Zhu XJ, Wang Q, Wang CY, Qin P, Peng J, Hou M (2009) High-dose dexamethasone regulates interleukin-18 and interleukin-18 binding protein in idiopathic thrombocytopenic purpura. Haematologica 94:1603–1607PubMedCrossRefGoogle Scholar
  20. 20.
    Cao J, Chen C, Li L, Ling-yu Z, Zhen-yu L, Zhi-ling Y, Wei C, Hai C, Sang W, Kai-lin X (2012) Effects of high-dose dexamethasone on regulating interleukin-22 production and correcting Th1 and Th22 polarization in immune thrombocytopenia. J Clin Immunol 32:523–529PubMedCrossRefGoogle Scholar
  21. 21.
    Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH, Cooper N, Godeau B, Lechner K, Mazzucconi MG, McMillan R, Sanz MA, Imbach P, Blanchette V, Kuhne T, Ruggeri M, George JN (2009) Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 113:2386–2393PubMedCrossRefGoogle Scholar
  22. 22.
    Agarwal SK, Gourh P, Shete S, Paz G, Divecha D, Reveille JD, Assassi S, Tan FK, Mayes MD, Arnett FC (2009) Association of interleukin 23 receptor polymorphisms with anti-topoisomerase-I positivity and pulmonary hypertension in systemic sclerosis. J Rheumatol 36:2715–2723PubMedCrossRefGoogle Scholar
  23. 23.
    Xu Y, Liu Y, Pan S, Liu L, Liu J, Zhai X, Shen H, Hu Z (2013) IL-23R polymorphisms, HBV infection, and risk of hepatocellular carcinoma in a high-risk Chinese population. J Gastroenterol 48:125–131PubMedCrossRefGoogle Scholar
  24. 24.
    Chen J, Lu Y, Zhang H, Ding Y, Ren C, Hua Z, Zhou Y, Deng B, Jin G, Hu Z, Xu Y, Shen H (2010) A nonsynonymous polymorphism in IL23R gene is associated with risk of gastric cancer in a Chinese population. Mol Carcinog 49:862–868PubMedCrossRefGoogle Scholar
  25. 25.
    Kan SH, Mancini G, Gallagher G (2008) Identification and characterization of multiple splice forms of the human interleukin-23 receptor alpha chain in mitogen-activated leukocytes. Genes Immun 9:631–639PubMedCrossRefGoogle Scholar
  26. 26.
    Sanchez E, Rueda B, Callejas JL, Sabio JM, Ortego-Centeno N, Jimenez-Alonso J, Lopez-Nevot MA, Martin J (2007) Analysis of interleukin-23 receptor (IL23R) gene polymorphisms in systemic lupus erythematosus. Tissue Antigens 70:233–237PubMedCrossRefGoogle Scholar
  27. 27.
    Takaku T, Calado RT, Kajigaya S, Young NS (2009) Interleukin-23 receptor (IL-23R) gene polymorphisms in acquired aplastic anemia. Ann Hematol 88:653–657PubMedCrossRefGoogle Scholar
  28. 28.
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O’Shea JJ, Cua DJ (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324PubMedCrossRefGoogle Scholar
  29. 29.
    Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, Bettelli E, Kuchroo VK, Oukka M (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182:5904–5908PubMedCrossRefGoogle Scholar
  30. 30.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRefGoogle Scholar
  31. 31.
    Chen DY, Chen YM, Wen MC, Hsieh TY, Hung WT, Lan JL (2012) The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus 21:1385–1396PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yanxia Zhan
    • 1
  • Fanli Hua
    • 1
  • Lili Ji
    • 1
  • Weiguang Wang
    • 1
  • Shanhua Zou
    • 1
  • Xiaoyun Wang
    • 1
  • Feng Li
    • 1
  • Yunfeng Cheng
    • 1
    • 2
    • 3
  1. 1.Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
  3. 3.Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina

Personalised recommendations