Annals of Hematology

, Volume 92, Issue 5, pp 595–604 | Cite as

Cytological characterization of murine bone marrow and spleen hematopoietic compartments for improved assessment of toxicity in preclinical gene marking models

  • Min Yang
  • Guntram Büsche
  • Arnold Ganser
  • Zhixiong Li
Original Article

Abstract

Gene therapy has proven its potential to cure diseases of the hematopoietic system, but potential adverse reactions related to insertional mutagenesis by integrating gene vectors and chromosomal instability in long-lived repopulating cells have emerged as a major limitation. Preclinical gene therapy in murine models is a powerful model for assessment of gene marking efficiency and adverse reactions. However, changes in the hematologic composition after transplantation with retrovirally modified hematopoietic stem cells have not been well investigated in large cohorts of animals by systematic cytological analyses. In the present study, cytological analyses of bone marrow and spleen were performed in a large cohort (n = 58) of C57BL/6J mice over an extended observation period after gene marking. Interestingly, we observed hematological malignancies in four out of 30 animals transplanted with dLNGFR (truncated form of the human p75 low-affinity nerve growth factor receptor) and tCD34 modified stem/progenitor cells. Our data demonstrate that cytological analysis provides important information for diagnosis of hematological disorders and thus should be included in preclinical studies and performed in each investigated animal. Together with histological analysis, flow cytometric analysis, and other analyses, the quality and predictive value of preclinical gene therapy studies will be improved.

Keywords

Preclinical gene therapy studies Cytological analysis dLNGFR tCD34 

Notes

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (DFG, Li 1608/2-1 and BA1837/ 7-2) and the Deutsche Krebshilfe (grant: 108245). We are very grateful to Prof. Dr. Christopher Baum for his support; Prof. Dr. Kenji Kamino for histopathological examination of animals at the beginning of study; Dr. Mathias Rhein for providing samples; Dr. Olga Kustikova, Teng Cheong Ha, and Kezhi Huang for help with LM-PCR; Rena-Mareike Struß, Jessica Wenzl, Cindy Elfers, Thomas Neumann, Ellen Neumann, Christine Garen, and Mareike Knackstedt for technical assistance; and Dr. Michael Morgan for critical reading of this paper. We also thank Dr. Scott C. Kogan (University of California, San Francisco) for kind discussions about diagnosis of myeloid neoplasms, Jörg Frühauf and Hans Grundke for the irradiation of animals, and Stefanie Ernst and Dr. Michael Schneider (Institute of Biometrics, MHH) for help with statistical analysis. This study is part of the COST Action BM0801 (EuGESMA).

Authorship and conflict of interest statements

MY performed research, collected, analyzed and interpreted data, and wrote the manuscript. GB performed histological analysis. ZL designed and performed research, collected, analyzed and interpreted data, and wrote the manuscript. AG performed research, analyzed and interpreted data, and wrote the manuscript. The authors do not declare any competing financial interests.

Supplementary material

277_2012_1655_MOESM1_ESM.doc (130 kb)
ESM 1 (DOC 130 kb)
277_2012_1655_MOESM2_ESM.pdf (50 kb)
ESM 2 (PDF 50.0 kb)
277_2012_1655_MOESM3_ESM.pdf (55 kb)
ESM 3 (PDF 54.9 kb)
277_2012_1655_MOESM4_ESM.pptx (99 kb)
ESM 4 (PPTX 98.9 kb)

References

  1. 1.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  2. 2.
    Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen R, Debre M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, Cavazzana-Calvo M (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364PubMedCrossRefGoogle Scholar
  3. 3.
    Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kuhlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Luthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409PubMedCrossRefGoogle Scholar
  4. 4.
    Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, Bohm M, Nowrouzi A, Ball CR, Glimm H, Naundorf S, Kuhlcke K, Blasczyk R, Kondratenko I, Marodi L, Orange JS, von Kalle C, Klein C (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363:1918–1927PubMedCrossRefGoogle Scholar
  5. 5.
    Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, Scaramuzza S, Andolfi G, Mirolo M, Brigida I, Tabucchi A, Carlucci F, Eibl M, Aker M, Slavin S, Al-Mousa H, Al Ghonaium A, Ferster A, Duppenthaler A, Notarangelo L, Wintergerst U, Buckley RH, Bregni M, Marktel S, Valsecchi MG, Rossi P, Ciceri F, Miniero R, Bordignon C, Roncarolo MG (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458PubMedCrossRefGoogle Scholar
  6. 6.
    Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P (2010) Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467:318–322PubMedCrossRefGoogle Scholar
  7. 7.
    Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M, Kramer A, Schwable J, Glimm H, Koehl U, Preiss C, Ball C, Martin H, Gohring G, Schwarzwaelder K, Hofmann WK, Karakaya K, Tchatchou S, Yang R, Reinecke P, Kuhlcke K, Schlegelberger B, Thrasher AJ, Hoelzer D, Seger R, von Kalle C, Grez M (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16:198–204PubMedCrossRefGoogle Scholar
  8. 8.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedCrossRefGoogle Scholar
  9. 9.
    Kustikova OS, Geiger H, Li Z, Brugman MH, Chambers SM, Shaw CA, Pike-Overzet K, de Ridder D, Staal FJ, von Keudell G, Cornils K, Nattamai KJ, Modlich U, Wagemaker G, Goodell MA, Fehse B, Baum C (2007) Retroviral vector insertion sites associated with dominant hematopoietic clones mark "stemness" pathways. Blood 109:1897–1907PubMedCrossRefGoogle Scholar
  10. 10.
    Kustikova O, Fehse B, Modlich U, Yang M, Dullmann J, Kamino K, von Neuhoff N, Schlegelberger B, Li Z, Baum C (2005) Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308:1171–1174PubMedCrossRefGoogle Scholar
  11. 11.
    Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kuhlcke K, Eckert HG, Fehse B, Baum C (2002) Murine leukemia induced by retroviral gene marking. Science 296:497PubMedCrossRefGoogle Scholar
  12. 12.
    Seggewiss R, Pittaluga S, Adler RL, Guenaga FJ, Ferguson C, Pilz IH, Ryu B, Sorrentino BP, Young WS 3rd, Donahue RE, von Kalle C, Nienhuis AW, Dunbar CE (2006) Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 107:3865–3867PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang XB, Beard BC, Trobridge GD, Wood BL, Sale GE, Sud R, Humphries RK, Kiem HP (2008) High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J Clin Invest 118:1502–1510PubMedCrossRefGoogle Scholar
  14. 14.
    Maetzig T, Brugman MH, Bartels S, Heinz N, Kustikova OS, Modlich U, Li Z, Galla M, Schiedlmeier B, Schambach A, Baum C (2011) Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells. Blood 117:3053–3064PubMedCrossRefGoogle Scholar
  15. 15.
    Dunbar CE (2007) The yin and yang of stem cell gene therapy: insights into hematopoiesis, leukemogenesis, and gene therapy safety. Hematology Am Soc Hematol Educ Program:460–465Google Scholar
  16. 16.
    Yang M, Büsche G, Ganser, A , Li Z. (2012) Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects. Ann HematolGoogle Scholar
  17. 17.
    Li Z, Modlich U, Anjali M (2009) Leukemia diagnosis in murine bone marrow transplantation models. Methods Mol Biol 506:311–329PubMedCrossRefGoogle Scholar
  18. 18.
    Perkins AS (1989) The pathology of murine myelogenous leukemias. Curr Top Microbiol Immunol 149:3–21PubMedCrossRefGoogle Scholar
  19. 19.
    Li Z, Beutel G, Rhein M, Meyer J, Koenecke C, Neumann T, Yang M, Krauter J, von Neuhoff N, Heuser M, Diedrich H, Gohring G, Wilkens L, Schlegelberger B, Ganser A, Baum C (2009) High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113:2028–2037PubMedCrossRefGoogle Scholar
  20. 20.
    Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD, Carter JS, de Coronado S, Downing JR, Fredrickson TN, Haines DC, Harris AW, Harris NL, Hiai H, Jaffe ES, MacLennan IC, Pandolfi PP, Pattengale PK, Perkins AS, Simpson RM, Tuttle MS, Wong JF, Morse HC 3rd (2002) Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100:238–245PubMedCrossRefGoogle Scholar
  21. 21.
    Li Z, Fehse B, Schiedlmeier B, Dullmann J, Frank O, Zander AR, Ostertag W, Baum C (2002) Persisting multilineage transgene expression in the clonal progeny of a hematopoietic stem cell. Leukemia 16:1655–1663PubMedCrossRefGoogle Scholar
  22. 22.
    Li Z, Schwieger M, Lange C, Kraunus J, Sun H, van den Akker E, Modlich U, Serinsoz E, Will E, von Laer D, Stocking C, Fehse B, Schiedlmeier B, Baum C (2003) Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Exp Hematol 31:1206–1214PubMedCrossRefGoogle Scholar
  23. 23.
    Bonini C, Grez M, Traversari C, Ciceri F, Marktel S, Ferrari G, Dinauer M, Sadat M, Aiuti A, Deola S, Radrizzani M, Hagenbeek A, Apperley J, Ebeling S, Martens A, Kolb HJ, Weber M, Lotti F, Grande A, Weissinger E, Bueren JA, Lamana M, Falkenburg JH, Heemskerk MH, Austin T, Kornblau S, Marini F, Benati C, Magnani Z, Cazzaniga S, Toma S, Gallo-Stampino C, Introna M, Slavin S, Greenberg PD, Bregni M, Mavilio F, Bordignon C (2003) Safety of retroviral gene marking with a truncated NGF receptor. Nat Med 9:367–369PubMedCrossRefGoogle Scholar
  24. 24.
    Meyer J, Rhein M, Schiedlmeier B, Kustikova O, Rudolph C, Kamino K, Neumann T, Yang M, Wahlers A, Fehse B, Reuther GW, Schlegelberger B, Ganser A, Baum C, Li Z (2007) Remarkable leukemogenic potency and quality of a constitutively active neurotrophin receptor, deltaTrkA. Leukemia 21:2171–2180PubMedCrossRefGoogle Scholar
  25. 25.
    Li Z, Kustikova OS, Kamino K, Neumann T, Rhein M, Grassman E, Fehse B, Baum C (2007) Insertional mutagenesis by replication-deficient retroviral vectors encoding the large T oncogene. Ann N Y Acad Sci 1106:95–113PubMedCrossRefGoogle Scholar
  26. 26.
    Morse HC 3rd, Anver MR, Fredrickson TN, Haines DC, Harris AW, Harris NL, Jaffe ES, Kogan SC, MacLennan IC, Pattengale PK, Ward JM (2002) Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100:246–258PubMedCrossRefGoogle Scholar
  27. 27.
    Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114PubMedCrossRefGoogle Scholar
  28. 28.
    Fredrickson TN, and Harris AW (2000) Atlas of Mouse Hematopathology. Harwood Academic, New York, 15–24Google Scholar
  29. 29.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474PubMedCrossRefGoogle Scholar
  30. 30.
    Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z, Kamino K, von Neuhoff N, Schlegelberger B, Kuehlcke K, Bunting KD, Schmidt S, Deichmann A, von Kalle C, Fehse B, Baum C (2005) Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 105:4235–4246PubMedCrossRefGoogle Scholar
  31. 31.
    Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z, Maetzig T, Rudolph C, Schlegelberger B, Baum C (2008) Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 22:1519–1528PubMedCrossRefGoogle Scholar
  32. 32.
    Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG (2004) RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 32:D523–D527PubMedCrossRefGoogle Scholar
  33. 33.
    Caudell D, Harper DP, Novak RL, Pierce RM, Slape C, Wolff L, Aplan PD (2010) Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. Blood 115:1194–1203PubMedCrossRefGoogle Scholar
  34. 34.
    Secchiero P, Melloni E, di Iasio MG, Tiribelli M, Rimondi E, Corallini F, Gattei V, Zauli G (2009) Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 113:4300–4308PubMedCrossRefGoogle Scholar
  35. 35.
    Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Lotze MT, Tang D, Cao L (2011) HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 25:23–31PubMedCrossRefGoogle Scholar
  36. 36.
    Holyoake TL, Freshney MG, Samuel K, Ansell J, Watson GE, Wright EG, Graham GJ, Pragnell IB (2001) In vivo expansion of the endogenous B-cell compartment stimulated by radiation and serial bone marrow transplantation induces B-cell leukaemia in mice. Br J Haematol 114:49–56PubMedCrossRefGoogle Scholar
  37. 37.
    Siapati EK, Bigger BW, Kashofer K, Themis M, Thrasher AJ, Bonnet D (2007) Murine leukemia following irradiation conditioning for transplantation of lentivirally-modified hematopoietic stem cells. Eur J Haematol 78:303–313PubMedCrossRefGoogle Scholar
  38. 38.
    Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP (1998) Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92:2269–2279PubMedGoogle Scholar
  39. 39.
    Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C, Garrett T, Fetell M, Reiss R, Bank A, Antman K (1998) Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 16:165–172PubMedGoogle Scholar
  40. 40.
    Schiedlmeier B, Klump H, Will E, Arman-Kalcek G, Li Z, Wang Z, Rimek A, Friel J, Baum C, Ostertag W (2003) High-level ectopic HOXB4 expression confers a profound in vivo competitive growth advantage on human cord blood CD34+ cells, but impairs lymphomyeloid differentiation. Blood 101:1759–1768PubMedCrossRefGoogle Scholar
  41. 41.
    Wicke DC, Meyer J, Buesche G, Heckl D, Kreipe H, Li Z, Welte KH, Ballmaier M, Baum C, Modlich U (2010) Gene therapy of MPL deficiency: challenging balance between leukemia and pancytopenia. Mol Ther 18:343–352PubMedCrossRefGoogle Scholar
  42. 42.
    Garaci E, Caroleo MC, Aloe L, Aquaro S, Piacentini M, Costa N, Amendola A, Micera A, Calio R, Perno CF, Levi-Montalcini R (1999) Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc Natl Acad Sci U S A 96:14013–14018PubMedCrossRefGoogle Scholar
  43. 43.
    Hantzopoulos PA, Suri C, Glass DJ, Goldfarb MP, Yancopoulos GD (1994) The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13:187–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Min Yang
    • 1
  • Guntram Büsche
    • 2
  • Arnold Ganser
    • 3
  • Zhixiong Li
    • 1
  1. 1.Institute of Experimental Hematology, OE6960Hannover Medical SchoolHannoverGermany
  2. 2.Institute of PathologyHannover Medical SchoolHannoverGermany
  3. 3.Department of Hematology, Hemostasis, Oncology, and Stem Cell TransplantationHannover Medical SchoolHannoverGermany

Personalised recommendations