Annals of Hematology

, Volume 92, Issue 3, pp 301–313 | Cite as

Effector mechanisms of sunitinib-induced G1 cell cycle arrest, differentiation, and apoptosis in human acute myeloid leukaemia HL60 and KG-1 cells

  • Chieh-Lin Jerry Teng
  • Chang-Tze Ricky Yu
  • Wen-Li Hwang
  • Jia-Rong Tsai
  • Hsiang-Chun Liu
  • Guang-Yuh Hwang
  • Shih-Lan Hsu
Original Article


Acute myeloid leukaemia (AML) is a heterogeneous disease with dismal outcome. Sunitinib is an orally active inhibitor of multiple tyrosine kinase receptors approved for renal cell carcinoma and gastrointestinal stromal tumour that has also been studied for AML in several clinical trials. However, the precise mechanism of sunitinib action against AML remains unclear and requires further investigation. For this purpose, this study was conducted using human AML cell lines (HL60 and KG-1) and AML patients’ mononucleated cells. Sunitinib induced G1 phase arrest associated with decreased cyclin D1, cyclin D3, and cyclin-dependent kinase (Cdk)2 and increased p27Kip1, pRb1, and p130/Rb2 expression and phosphorylated activation of protein kinase C alpha and beta (PKCα/β). Selective PKCα/β inhibitor treatment abolished sunitinib-elicited AML differentiation, suggesting that PKCα/β may underlie sunitinib-induced monocytic differentiation. Furthermore, sunitinib increased pro-apoptotic molecule expression (Bax, Bak, PUMA, Fas, FasL, DR4, and DR5) and decreased anti-apoptotic molecule expression (Bcl-2 and Mcl-1), resulting in caspase-2, caspase-3, caspase-8, and caspase-9 activation and both death receptor and mitochondria-dependent apoptosis. Taken together, these findings provide evidence that sunitinib targets AML cells through both differentiation and apoptosis pathways. More clinical studies are urgently needed to demonstrate its optimal clinical applications in AML.


Sunitinib Differentiation Apoptosis PKC Bcl-2 



We thanked Pfizer pharmaceutical company for kindly providing sunitinib compound. This work was supported by the research grant from Taichung Veterans General Hospital (TCVGH-1003701B), National Science Council (NSC99-3112-B-075A-001) and Tunghai University (TCVGH-T1007802).

Author contributions

C-L Teng and S-L Hsu performed the research and wrote the paper, W-L Hwang, C-T Yu and G-Y Hwang designed research and revised the paper, and H-C Liu and J-R Tsai performed the experiments.

Conflict of interest

The authors have no conflicting financial interests.


  1. 1.
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, Watson MS, Koduru PR, Moore JO, Stone RM, Mayer RJ, Feldman EJ, Davey FR, Schiffer CA, Larson RA, Bloomfield CD (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100(13):4325–4336. doi: 10.1182/blood-2002-03-0772 PubMedCrossRefGoogle Scholar
  2. 2.
    Petrie K, Zelent A, Waxman S (2009) Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol 16(2):84–91. doi: 10.1097/MOH.0b013e3283257aee PubMedCrossRefGoogle Scholar
  3. 3.
    Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Buchner T, Dohner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113(9):1875–1891. doi: 10.1182/blood-2008-04-150250 PubMedCrossRefGoogle Scholar
  4. 4.
    Estey E, Garcia-Manero G, Ferrajoli A, Faderl S, Verstovsek S, Jones D, Kantarjian H (2006) Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107(9):3469–3473. doi: 10.1182/blood-2005-10-4006 PubMedCrossRefGoogle Scholar
  5. 5.
    Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P, Shaji RV, Srivastava VM, Srivastava A, Chandy M (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107(7):2627–2632. doi: 10.1182/blood-2005-08-3532 PubMedCrossRefGoogle Scholar
  6. 6.
    Koeffler HP (2010) Is there a role for differentiating therapy in non-APL AML? Best Pract Res Clin Haematol 23(4):503–508. doi: 10.1016/j.beha.2010.09.014 PubMedCrossRefGoogle Scholar
  7. 7.
    Chow LQ, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25(7):884–896. doi: 10.1200/JCO.2006.06.3602 PubMedCrossRefGoogle Scholar
  8. 8.
    Mena AC, Pulido EG, Guillen-Ponce C (2010) Understanding the molecular-based mechanism of action of the tyrosine kinase inhibitor: sunitinib. Anti-Cancer Drugs 21(Suppl 1):S3–S11. doi: 10.1097/01.cad.0000361534.44052.c5 PubMedCrossRefGoogle Scholar
  9. 9.
    O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, Wong LM, Hong W, Lee LB, Town A, Smolich BD, Manning WC, Murray LJ, Heinrich MC, Cherrington JM (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101(9):3597–3605. doi: 10.1182/blood-2002-07-2307 PubMedCrossRefGoogle Scholar
  10. 10.
    Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O'Farrell AM, Bello CL, Allred R, Manning WC, Cherrington JM, Louie SG, Hong W, Brega NM, Massimini G, Scigalla P, Berdel WE, Hossfeld DK (2005) A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 105(3):986–993. doi: 10.1182/blood-2004-05-1846 PubMedCrossRefGoogle Scholar
  11. 11.
    Nishioka C, Ikezoe T, Yang J, Yokoyama A (2009) Sunitinib, an orally available receptor tyrosine kinase inhibitor, induces monocytic differentiation of acute myelogenous leukemia cells that is enhanced by 1,25-dihydroxyvitamin D(3). Leukemia 23(11):2171–2173. doi: 10.1038/leu.2009.152 PubMedCrossRefGoogle Scholar
  12. 12.
    Fenton MS, Marion KM, Salem AK, Hogen R, Naeim F, Hershman JM (2010) Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid 20(9):965–974. doi: 10.1089/thy.2010.0008 PubMedCrossRefGoogle Scholar
  13. 13.
    Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29(6):468–480. doi: 10.1002/cbf.1774 PubMedCrossRefGoogle Scholar
  14. 14.
    Kelly PN, Strasser A (2011) The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18(9):1414–1424. doi: 10.1038/cdd.2011.17 PubMedCrossRefGoogle Scholar
  15. 15.
    Miranda MB, Johnson DE (2007) Signal transduction pathways that contribute to myeloid differentiation. Leukemia 21(7):1363–1377. doi: 10.1038/sj.leu.2404690 PubMedCrossRefGoogle Scholar
  16. 16.
    Kelly LM, Gilliland DG (2002) Genetics of myeloid leukemias. Annu Rev Genom Hum Genet 3:179–198. doi: 10.1146/annurev.genom.3.032802.115046 CrossRefGoogle Scholar
  17. 17.
    Konopleva M, Tsao T, Ruvolo P, Stiouf I, Estrov Z, Leysath CE, Zhao S, Harris D, Chang S, Jackson CE, Munsell M, Suh N, Gribble G, Honda T, May WS, Sporn MB, Andreeff M (2002) Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood 99(1):326–335PubMedCrossRefGoogle Scholar
  18. 18.
    Lange C, Calegari F (2010) Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 9(10):1893–1900PubMedCrossRefGoogle Scholar
  19. 19.
    Blomen VA, Boonstra J (2007) Cell fate determination during G1 phase progression. Cell Mol Life Sci CMLS 64(23):3084–3104. doi: 10.1007/s00018-007-7271-z CrossRefGoogle Scholar
  20. 20.
    Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262PubMedCrossRefGoogle Scholar
  21. 21.
    Yang F, Jove V, Xin H, Hedvat M, Van Meter TE, Yu H (2010) Sunitinib induces apoptosis and growth arrest of medulloblastoma tumor cells by inhibiting STAT3 and AKT signaling pathways. Mol Cancer Res MCR 8(1):35–45. doi: 10.1158/1541-7786.MCR-09-0220 CrossRefGoogle Scholar
  22. 22.
    Tong W, Kiyokawa H, Soos TJ, Park MS, Soares VC, Manova K, Pollard JW, Koff A (1998) The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition. Cell Growth Differ 9(9):787–794PubMedGoogle Scholar
  23. 23.
    Dzikaite V, Kanopka A, Brock JH, Kazlauskas A, Melefors O (2000) A novel endoproteolytic processing activity in mitochondria of erythroid cells and the role in heme synthesis. Blood 96(2):740–746PubMedGoogle Scholar
  24. 24.
    Tamir A, Petrocelli T, Stetler K, Chu W, Howard J, Croix BS, Slingerland J, Ben-David Y (2000) Stem cell factor inhibits erythroid differentiation by modulating the activity of G1-cyclin-dependent kinase complexes: a role for p27 in erythroid differentiation coupled G1 arrest. Cell Growth Differ 11(5):269–277PubMedGoogle Scholar
  25. 25.
    Delehouzee S, Yoshikawa T, Sawa C, Sawada J, Ito T, Omori M, Wada T, Yamaguchi Y, Kabe Y, Handa H (2005) GABP, HCF-1 and YY1 are involved in Rb gene expression during myogenesis. Genes Cells 10(7):717–731. doi: 10.1111/j.1365-2443.2005.00873.x PubMedCrossRefGoogle Scholar
  26. 26.
    Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA, Petrovic N, Enerback S, Nedergaard J, Cinti S, te Riele H, Kristiansen K (2004) Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci U S A 101(12):4112–4117. doi: 10.1073/pnas.0301964101 PubMedCrossRefGoogle Scholar
  27. 27.
    Garriga J, Limon A, Mayol X, Rane SG, Albrecht JH, Reddy EP, Andres V, Grana X (1998) Differential regulation of the retinoblastoma family of proteins during cell proliferation and differentiation. Biochem J 333(Pt 3):645–654PubMedGoogle Scholar
  28. 28.
    Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, Hinds PW (2001) The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 8(2):303–316PubMedCrossRefGoogle Scholar
  29. 29.
    Paramio JM, Lain S, Segrelles C, Lane EB, Jorcano JL (1998) Differential expression and functionally co-operative roles for the retinoblastoma family of proteins in epidermal differentiation. Oncogene 17(8):949–957. doi: 10.1038/sj.onc.1202031 PubMedCrossRefGoogle Scholar
  30. 30.
    Galderisi U, Melone MA, Jori FP, Piegari E, Di Bernardo G, Cipollaro M, Cascino A, Peluso G, Claudio PP, Giordano A (2001) pRb2/p130 gene overexpression induces astrocyte differentiation. Mol Cell Neurosci 17(3):415–425. doi: 10.1006/mcne.2000.0949 PubMedCrossRefGoogle Scholar
  31. 31.
    Raschella G, Tanno B, Bonetto F, Negroni A, Claudio PP, Baldi A, Amendola R, Calabretta B, Giordano A, Paggi MG (1998) The RB-related gene Rb2/p130 in neuroblastoma differentiation and in B-myb promoter down-regulation. Cell Death Differ 5(5):401–407. doi: 10.1038/sj.cdd.4400359 PubMedCrossRefGoogle Scholar
  32. 32.
    Chen C, Wells AD (2007) Comparative analysis of E2F family member oncogenic activity. PLoS One 2(9):e912. doi: 10.1371/journal.pone.0000912 PubMedCrossRefGoogle Scholar
  33. 33.
    Meinhardt G, Roth J, Hass R (2000) Activation of protein kinase C relays distinct signaling pathways in the same cell type: differentiation and caspase-mediated apoptosis. Cell Death Differ 7(9):795–803. doi: 10.1038/sj.cdd.4400709 PubMedCrossRefGoogle Scholar
  34. 34.
    Macfarlane DE, Manzel L (1994) Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem 269(6):4327–4331PubMedGoogle Scholar
  35. 35.
    Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF (1993) Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 268(27):20110–20115PubMedGoogle Scholar
  36. 36.
    Noti JD, Reinemann BC, Johnson AK (2001) The leukocyte integrins are regulated by transcriptional and post-transcriptional mechanisms in a leukemic cell that overexpresses protein kinase C-zeta. Int J Oncol 19(6):1311–1318PubMedGoogle Scholar
  37. 37.
    Deshpande RV, Peterson RH, Moore MA (1997) Granulocyte colony-stimulating factor-induced activation of protein kinase-C in myeloid cells. J Cell Biochem 66(3):286–296PubMedCrossRefGoogle Scholar
  38. 38.
    Schittenhelm MM, Yee KW, Tyner JW, McGreevey L, Haley AD, Town A, Griffith DJ, Bainbridge T, Braziel RM, O'Farrell AM, Cherrington JM, Heinrich MC (2006) FLT3 K663Q is a novel AML-associated oncogenic kinase: determination of biochemical properties and sensitivity to Sunitinib (SU11248). Leukemia 20(11):2008–2014. doi: 10.1038/sj.leu.2404374 PubMedCrossRefGoogle Scholar
  39. 39.
    Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513. doi: 10.1158/0008-5472.CAN-08-4323 PubMedCrossRefGoogle Scholar
  40. 40.
    Nishioka C, Ikezoe T, Yang J, Takeshita A, Taniguchi A, Komatsu N, Togitani K, Koeffler HP, Yokoyama A (2008) Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk Res 32(6):865–872. doi: 10.1016/j.leukres.2007.09.017 PubMedCrossRefGoogle Scholar
  41. 41.
    Ping SY, Wu CL, Yu DS (2010) Sunitinib can enhance BCG mediated cytotoxicity to transitional cell carcinoma through apoptosis pathway. Urol Oncol. doi: 10.1016/j.urolonc.2010.07.001
  42. 42.
    Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M (2010) Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79(9):1272–1280. doi: 10.1016/j.bcp.2009.12.021 PubMedCrossRefGoogle Scholar
  43. 43.
    Sonpavde G, Jian W, Liu H, Wu MF, Shen SS, Lerner SP (2009) Sunitinib malate is active against human urothelial carcinoma and enhances the activity of cisplatin in a preclinical model. Urol Oncol 27(4):391–399. doi: 10.1016/j.urolonc.2008.03.017 PubMedCrossRefGoogle Scholar
  44. 44.
    Zwolak P, Jasinski P, Terai K, Gallus NJ, Ericson ME, Clohisy DR, Dudek AZ (2008) Addition of receptor tyrosine kinase inhibitor to radiation increases tumour control in an orthotopic murine model of breast cancer metastasis in bone. Eur J Cancer 44(16):2506–2517. doi: 10.1016/j.ejca.2008.07.011 PubMedCrossRefGoogle Scholar
  45. 45.
    Ikezoe T, Yang Y, Nishioka C, Bandobashi K, Nakatani H, Taguchi T, Koeffler HP, Taguchi H (2006) Effect of SU11248 on gastrointestinal stromal tumor-T1 cells: enhancement of growth inhibition via inhibition of 3-kinase/Akt/mammalian target of rapamycin signaling. Cancer Sci 97(9):945–951. doi: 10.1111/j.1349-7006.2006.00263.x PubMedCrossRefGoogle Scholar
  46. 46.
    Guerin O, Formento P, Lo Nigro C, Hofman P, Fischel JL, Etienne-Grimaldi MC, Merlano M, Ferrero JM, Milano G (2008) Supra-additive antitumor effect of sunitinib malate (SU11248, Sutent) combined with docetaxel. A new therapeutic perspective in hormone refractory prostate cancer. J Cancer Res Clin Oncol 134(1):51–57. doi: 10.1007/s00432-007-0247-4 PubMedCrossRefGoogle Scholar
  47. 47.
    Yoon CY, Lee JS, Kim BS, Jeong SJ, Hong SK, Byun SS, Lee SE (2011) Sunitinib malate synergistically potentiates anti-tumor effect of gemcitabine in human bladder cancer cells. Korean J Urol 52(1):55–63. doi: 10.4111/kju.2011.52.1.55 PubMedCrossRefGoogle Scholar
  48. 48.
    Ding W, Cai T, Zhu H, Wu R, Tu C, Yang L, Lu W, He Q, Yang B (2010) Synergistic antitumor effect of TRAIL in combination with sunitinib in vitro and in vivo. Cancer Lett 293(2):158–166. doi: 10.1016/j.canlet.2010.01.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chieh-Lin Jerry Teng
    • 1
    • 2
    • 3
  • Chang-Tze Ricky Yu
    • 4
  • Wen-Li Hwang
    • 1
  • Jia-Rong Tsai
    • 5
  • Hsiang-Chun Liu
    • 5
  • Guang-Yuh Hwang
    • 2
  • Shih-Lan Hsu
    • 5
  1. 1.Division of Hematology/Oncology, Department of MedicineTaichung Veterans General HospitalTaichungRepublic of China
  2. 2.Department of Life ScienceTunghai UniversityTaichungRepublic of China
  3. 3.Department of MedicineChung Shan Medical UniversityTaichungRepublic of China
  4. 4.Department of Applied ChemistryNational Chi Nan UniversityTaichungRepublic of China
  5. 5.Department of Education and ResearchTaichung Veterans General HospitalTaichungRepublic of China

Personalised recommendations