Annals of Hematology

, Volume 92, Issue 1, pp 101–109 | Cite as

Interrelationship and expression profiling of cyclooxygenase and angiogenic factors in Indian patients with multiple myeloma

  • Rehan Khan
  • Manoj Sharma
  • Lalit Kumar
  • Syed Akhtar Husain
  • Alpana SharmaEmail author
Original Article


Multiple myeloma (MM) is classically illustrated by a desynchronized cytokine system with rise in inflammatory cytokines. There are recent reports which emphasized the potential role of angiogenesis in the development of MM. Role of cyclooxygenase 2 (COX-2) is well documented in the pathogenesis of solid tumors, but little is known about its occurrence and function in hematologic neoplasms. Involvement of neoangiogenesis is reported in the progression of MM, and angiopoietins probably contribute to this progression by enhancing neovascularization. Circulatory and mRNA levels of angiogenic factors and cyclooxygenase were determined in 125 subjects (75 MM patients and 50 healthy controls) by using enzyme-linked immunosorbent assay and quantitative PCR. We observed significant increase for angiogenic factors (Ang-1, Ang-2, hepatocyte growth factor, and vascular endothelial growth factor) and cyclooxygenase at circulatory level, as well as at mRNA level, as compared to healthy controls except insignificant increase for Ang-1 at circulatory level. We have also observed the significant positive correlation of all angiogenic factors with cyclooxygenase. The strong association found between angiogenic factors and COX-2 in this study may lead to the development of combination therapeutic strategy to treat MM. Therefore, targeting COX-2 by using its effective inhibitors demonstrating antiangiogenic and antitumor effects could be used as a new therapeutic approach for treatment of MM.


Multiple myeloma Angiopoietins Cyclooxygenase Angiogenesis 



We acknowledge the Indian Council of Medical Research, New Delhi, India, for providing monetary support to carry out this study. We would like to thank Dr. Guresh Kumar, Department of Biostatistics, AIIMS, New Delhi, for the statistical analysis of data.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bataille R, Harousseau J-L (1997) Multiple myeloma. N Engl J Med 336:1657–1664PubMedCrossRefGoogle Scholar
  2. 2.
    Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339PubMedCrossRefGoogle Scholar
  3. 3.
    Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC (2004) Advances in biology of multiple myeloma: clinical applications. Blood 104:607–618PubMedCrossRefGoogle Scholar
  4. 4.
    Rajkumar S-V, Mesa R-A, Fonseca R et al (2002) Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 8:2210–2216PubMedGoogle Scholar
  5. 5.
    Vacca A, Ribatti D, Presta M et al (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073PubMedGoogle Scholar
  6. 6.
    Vacca A, Ribatti D, Roccaro A-M, Frigeri A, Dammacco F (2001) Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol 28:543–550PubMedCrossRefGoogle Scholar
  7. 7.
    Munshi N-C, Wilson C (2001) Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. Semin Oncol 28:565–569PubMedCrossRefGoogle Scholar
  8. 8.
    Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20PubMedCrossRefGoogle Scholar
  9. 9.
    Salcedo R, Zhang X, Young HA et al (2003) Angiogenic effects of prostaglandin E2 are mediated by upregulation of CXCR4 on human microvascular endothelial cells. Blood 102:1966–1977PubMedCrossRefGoogle Scholar
  10. 10.
    Majima M, Hayashi I, Muramatsu M, Katada J, Yamashina S, Katori M (2000) Cyclooxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br J Pharmacol 130:641–649PubMedCrossRefGoogle Scholar
  11. 11.
    Gately S, Li WW (2004) Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31:2–11PubMedCrossRefGoogle Scholar
  12. 12.
    Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716PubMedCrossRefGoogle Scholar
  13. 13.
    Ohsawa M, Fukushima H, Ikura Y, Inoue T, Shirai N, Sugama Y, Suekane T, Kitabayashi C, Nakamae H, Hino M, Ueda M (2006) Expression of cyclooxygenase-2 in Hodgkin’s lymphoma: its role in cell proliferation and angiogenesis. Leuk Lymphoma 47:1863–1871PubMedCrossRefGoogle Scholar
  14. 14.
    Giulani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C et al (2003) Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102:638–645CrossRefGoogle Scholar
  15. 15.
    Zetterberg E, Lundberg LG, Palmblad J (2003) Expression of cox-2, tie-2 and glycodelin by megakaryocytes in patients with chronic myeloid leukaemia and polycythaemia vera. Br J Haematol 121:497–499PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang XH, Huang DP, Guo GL, Chen GR, Zhang HX, Wan L, Chen SY (2008) Co-expression of VEGF-C and COX-2 and its association with lymphangiogenesis in human breast cancer. BMC Cancer 8:4PubMedCrossRefGoogle Scholar
  17. 17.
    Tang H, Wang J, Bai F, Zhai H, Gao J, Hong L, Xie H, Zhang F, Lan M, Yao W, Liu J, Wu K, Fan D (2008) Positive correlation of osteopontin, cyclooxygenase-2 and vascular endothelial growth factor in gastric cancer. Cancer Investig 26:60–67CrossRefGoogle Scholar
  18. 18.
    Payvandi F, Wu L, Haley M, Schafer PH, Zhang LH, Chen RS, Muller GW, Stirling DI (2004) Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-alpha, IL-1beta, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol 230:81–88PubMedCrossRefGoogle Scholar
  19. 19.
    Masferrer JL, Koki A, Seibert K (1999) COX-2 inhibitors: a new class of antiangiogenic agents. Ann NY Acad Sci 889:84–86PubMedCrossRefGoogle Scholar
  20. 20.
    Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ, Tarnawski AS (1999) Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 5:1418–1423PubMedCrossRefGoogle Scholar
  21. 21.
    Peters KG, De Vries C, Williams LT (1993) Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci U S A 90:8915–8919PubMedCrossRefGoogle Scholar
  22. 22.
    Trusolino L, Comoglio PM (2002) Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2:289–300PubMedCrossRefGoogle Scholar
  23. 23.
    Rosario M, Birchmeier W (2003) How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 13:328–335PubMedCrossRefGoogle Scholar
  24. 24.
    Gerritsen ME, Tomlinson JE, Zlot C, Ziman M, Hwang S (2003) Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol 140:595–610PubMedCrossRefGoogle Scholar
  25. 25.
    Derksen PW, de Gorter DJ, Meijer HP et al (2003) The hepatocyte growth factor/met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17:764–774PubMedCrossRefGoogle Scholar
  26. 26.
    Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A (1996) Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88:3998–4004PubMedGoogle Scholar
  27. 27.
    Borset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A (1996) Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J Biol Chem 271:24655–24661PubMedCrossRefGoogle Scholar
  28. 28.
    Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A, Waage A (1998) Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood 91:806–812PubMedGoogle Scholar
  29. 29.
    Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180PubMedCrossRefGoogle Scholar
  30. 30.
    Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRefGoogle Scholar
  31. 31.
    Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMedCrossRefGoogle Scholar
  32. 32.
    Koga K, Todaka T, Morioka M, Hamada J, Kai Y, Yano S et al (2001) Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254PubMedGoogle Scholar
  33. 33.
    Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10PubMedCrossRefGoogle Scholar
  34. 34.
    Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori M (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153PubMedGoogle Scholar
  35. 35.
    Tsutsui S, Inoue H, Yasuda K et al (2006) Angiopoietin 2 expression in invasive ductal carcinoma of the breast: its relationship to the VEGF expression and microvessel density. Breast Cancer Res Treat 98:261–266PubMedCrossRefGoogle Scholar
  36. 36.
    Lind AJ, Wikstrom P, Granfors T, Egevad L, Stattin P, Bergh A (2005) Angiopoietin 2 expression is related to histological grade, vascular density, metastases, and outcome in prostate cancer. Prostate 62:394–399PubMedCrossRefGoogle Scholar
  37. 37.
    Negaard HF, Iversen N, Bowitz-Lothe IM, Sandset PM, Steinsvik B, Ostenstad B, Iversen PO (2009) Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors. Leukemia 23:162–169PubMedCrossRefGoogle Scholar
  38. 38.
    Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V et al (2003) A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 88:176–185PubMedGoogle Scholar
  39. 39.
    Vacca A, Scavelli C, Montefusco V et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23:5334–5346PubMedCrossRefGoogle Scholar
  40. 40.
    Quartarone E, Alonci A, Allegra A, Bellomo G, Calabro L, D’ Angelo A et al (2006) Differential levels of soluble angiopoietin-2 and Tie-2 in patients with haematological malignancies. Eur J Haematol 77:480–485PubMedCrossRefGoogle Scholar
  41. 41.
    Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H (2003) Expression of vascular endothelial factor and angiopoietin-2 in myeloma cells. Haematologica 88:113–115PubMedGoogle Scholar
  42. 42.
    Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331:1553–1558PubMedCrossRefGoogle Scholar
  43. 43.
    Vacca A, Ribatti D, Roncali L, Dammacco F (1995) Angiogenesis in B cell lymphoproliferative diseases. Biological and clinical studies. Leuk Lymphoma 20:27–38PubMedCrossRefGoogle Scholar
  44. 44.
    Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6:3111–3116PubMedGoogle Scholar
  45. 45.
    Kim HJ, Kim SM, Park KR, Jang HJ, Na YS, Ahn KS, Kim SH, Ahn KS (2011) Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway. Cancer Lett 301:29–37PubMedCrossRefGoogle Scholar
  46. 46.
    Zhu X, Giordano T, Yu QS, Holloway HW, Perry TA, Lahiri DK, Brossi A, Greig NH (2003) Thiothalidomides: novel isosteric analogues of thalidomide with enhanced TNF-alpha inhibitory activity. J Med Chem 46:5222–5229PubMedCrossRefGoogle Scholar
  47. 47.
    Watanabe M, Dewan MZ, Okamura T, Sasaki M, Itoh K, Higashihara M, Mizoguchi H, Honda M, Sata T, Watanabe T, Yamamoto N, Umezawa K, Horie R (2005) A novel NF-kappaB inhibitor DHMEQ selectively targets constitutive NF-kappaB activity and induces apoptosis of multiple myeloma cells in vitro and in vivo. Int J Cancer 114:32–38PubMedCrossRefGoogle Scholar
  48. 48.
    Gao SJ, Li GL (2009) Expression of midkine and vascular endothelial growth factor in bone marrow of patients with multiple myeloma and its significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17:1464–1467PubMedGoogle Scholar
  49. 49.
    Liu JR, Luo SK, Li J, Su C (2007) Expression and clinical significance of vascular endothelial growth factor and its receptors in multiple myeloma. Ai Zheng 26:652–656PubMedGoogle Scholar
  50. 50.
    Di Raimondo F, Azzaro MP, Palumbo G et al (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805PubMedGoogle Scholar
  51. 51.
    Sezer O, Jakob C, Eucker J et al (2001) Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 66:83–88PubMedCrossRefGoogle Scholar
  52. 52.
    Scudla V, Pika T, Budikova M, Petrova J, Minarik J, Bacovsky J, Langova K, Zivna J, Czech Myeloma Group (2010) The importance of serum levels of selected biological parameters in the diagnosis, staging and prognosis of multiple myeloma. Neoplasma 57:102–110PubMedCrossRefGoogle Scholar
  53. 53.
    Urba ska-Rys H, Wierzbowska A, Robak T (2003) Circulating angiogenic cytokines in multiple myeloma and related disorders. Eur Cytokine Netw 14:40–51PubMedGoogle Scholar
  54. 54.
    Iwasaki T, Hamano T, Ogata A et al (2002) Clinical significance of vascular endothelial growth factor and hepatocyte growth factor in multiple myeloma. Br J Haematol 116:796–802PubMedCrossRefGoogle Scholar
  55. 55.
    Andersen NF, Standal T, Nielsen JL, Heickendorff L, Borset M, Sørensen FB, Abildgaard N (2005) Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol 128:210–217PubMedCrossRefGoogle Scholar
  56. 56.
    Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, Kandefer-Szerszeń M (2008) Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz) 56:207–221CrossRefGoogle Scholar
  57. 57.
    Kara IO, Sahin B, Gunesacar R, Unsal C (2006) Clinical significance of hepatocyte growth factor, platelet-derived growth factor AB, and transforming growth factor-alpha in bone marrow and peripheral blood of patients with multiple myeloma. Adv Ther 23:635–645PubMedCrossRefGoogle Scholar
  58. 58.
    Zhan F, Hardin J, Kordsmeier B et al (2000) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99:1745–1757CrossRefGoogle Scholar
  59. 59.
    Anargyrou K, Terpos E, Vassilakopoulos TP, Pouli A, Sachanas S, Tzenou T, Masouridis S, Christoulas D, Angelopoulou MK, Dimitriadou EM, Kalpadakis C, Tsionos K, Panayiotidis P, Dimopoulos MA, Pangalis GA, Kyrtsonis MC, Greek Myeloma Study Group (2008) Normalization of the serum angiopoietin-1 to angiopoietin-2 ratio reflects response in refractory/resistant multiple myeloma patients treated with bortezomib. Haematologica 93:451–454PubMedCrossRefGoogle Scholar
  60. 60.
    Joshi S, Khan R, Sharma M, Kumar L, Sharma A (2011) Angiopoietin-2: a potential novel diagnostic marker in multiple myeloma. Clin Biochem 44:590–595PubMedCrossRefGoogle Scholar
  61. 61.
    Chen H, Shi L, Yang XY, Guo XL, Pan L (2010) Expression and clinical significance of angiopoietin-1 in multiple myeloma. Zhonghua Xue Ye Xue Za Zhi 31:654–658PubMedGoogle Scholar
  62. 62.
    Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, Dammacco F, Richardson PG, Anderson KC (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191PubMedCrossRefGoogle Scholar
  63. 63.
    Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739PubMedCrossRefGoogle Scholar
  64. 64.
    Jones PF (2003) Not just angiogenesis—wider roles for the angiopoietins. J Pathol 201:515–527PubMedCrossRefGoogle Scholar
  65. 65.
    Ladetto M, Vallet S, Trojan A, Dell’Aquila M, Monitillo L, Rosato R, Santo L, Drandi D, Bertola A, Falco P, Cavallo F, Ricca I, De Marco F, Mantoan B, Bode-Lesniewska B, Pagliano G, Francese R, Rocci A, Astolfi M, Compagno M, Mariani S, Godio L, Marino L, Ruggeri M, Omede P, Palumbo A, Boccadoro M (2005) Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 105:4784–4791PubMedCrossRefGoogle Scholar
  66. 66.
    Trojan A, Tinguely M, Vallet S, Seifert B, Jenni B, Zippelius A, Witzens-Harig M, Mechtersheimer G, Ho A, Goldschmidt H, Jager D, Boccadoro M, Ladetto M (2006) Clinical significance of cyclooxygenase-2 (COX-2) in multiple myeloma. Swiss Med Wkly 136:400–403PubMedGoogle Scholar
  67. 67.
    Cetin M, Buyukberber S, Demir M, Sari I, Sari I, Deniz K, Eser B, Altuntas F, Camci C, Oztürk A, Turgut B, Vural O, Unal A (2005) Overexpression of cyclooxygenase-2 in multiple myeloma: association with reduced survival. Am J Hematol 80:169–173PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang M, Abe Y, Matsushima T, Nishimura J, Nawata H, Muta K (2005) Selective cyclooxygenase 2 inhibitor NS-398 induces apoptosis in myeloma cells via a Bcl-2 independent pathway. Leuk Lymphoma 46:425–433PubMedCrossRefGoogle Scholar
  69. 69.
    Ding J, Tsuboi K, Hoshikawa H, Goto R, Mori N, Katsukawa M, Hiraki E, Yamamoto S, Abe M, Ueda N (2006) Cyclooxygenase isozymes are expressed in human myeloma cells but not involved in anti-proliferative effect of cyclooxygenase inhibitors. Mol Carcinog 45:250–259PubMedCrossRefGoogle Scholar
  70. 70.
    Ryan EP, Pollock SJ, Kaur K, Felgar RE, Bernstein SH, Chiorazzi N, Phipps RP (2006) Constitutive and activation-inducible cyclooxygenase-2 expression enhances survival of chronic lymphocytic leukemia B cells. Clin Immunol 120:76–90PubMedCrossRefGoogle Scholar
  71. 71.
    Paydas S, Ergin M, Erdogan S, Seydaoglu G (2007) Cyclooxygenase-2 expression in non-Hodgkin’s lymphomas. Leuk Lymphoma 48:389–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rehan Khan
    • 1
    • 4
  • Manoj Sharma
    • 2
  • Lalit Kumar
    • 3
  • Syed Akhtar Husain
    • 4
  • Alpana Sharma
    • 1
    Email author
  1. 1.Department of BiochemistryAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of Radiation OncologyMaulana Azad Medical CollegeNew DelhiIndia
  3. 3.Department of Medical OncologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
  4. 4.Department of BiotechnologyJamia Millia IslamiaNew DelhiIndia

Personalised recommendations