Annals of Hematology

, Volume 91, Issue 10, pp 1563–1577 | Cite as

Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders

  • Diana Campioni
  • M. Antonella Bardi
  • Francesco Cavazzini
  • Elisa Tammiso
  • Elisa Pezzolo
  • Emma Pregnolato
  • Eleonora Volta
  • Antonio Cuneo
  • Francesco Lanza
Original Article


The possibility that human mesenchymal stromal cells (hMSC) may derive from the malignant clone in hematological malignancies (HM) is a controversial issue. In order to clarify hMSC origin and disclose possible cytogenetic heterogeneity in hMSC belonging to different patients, bone marrow (BM)-derived hMSC samples from chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL) were expanded in culture, characterized by flow cytometry, and screened by conventional cytogenetic analysis and fluorescent in situ hybridization for the presence of possible cytogenetic aberrations, related or not to the hematopoietic neoplastic clone. Our data showed that the presence of cytogenetic aberrations in successfully expanded HM-MSC stromal layers derives from the persistence of contaminating hemopoietic cells (HC), which is greatly supported by in vitro culture conditions that could mimic in vivo microenvironmental niche. Interestingly, the presence of binucleated HM-MSC maintaining a diploid numerical setting has been also detected, while aneuploidies were observed more frequently in mononucleated HM-MSC from patients with an altered karyotype than in patients with a normal karyotype and controls. In conclusion, here, we showed that in ALL and in CLL, the BM-MSC has a normal karyotype, thus supporting a distinct origin from hematopoietic cells (HC). The presence of in vitro hMSC aneuploidy is associated with lymphoid neoplasias carrying chromosome abnormalities, suggesting that hMSC should be characterized before clinical application. The adequacy of hMSC cytogenetic characterization here proposed could represent a “prerequisite” to standardize the hMSC analysis before their use in the autologous setting and cellular therapy.


Mesenchymal cells Chronic lymphocytic leukemia Acute lymphoblastic leukemia Bone marrow microenvironment Cytogenetic alterations Molecular profile 


  1. 1.
    Trentin JJ (1971) Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM). Am J Pathol 65:621–628PubMedGoogle Scholar
  2. 2.
    Mayani H, Guilbert LJ, Janowska-Wieczorek A (1992) Biology of the hemopoietic microenvironment. Eur J Haematol 49:225–233PubMedCrossRefGoogle Scholar
  3. 3.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143PubMedCrossRefGoogle Scholar
  4. 4.
    Rizzo R, Campioni D, Stignani M et al (2008) A functional role for soluble HLA-G antigens in immune modulation mediated by mesenchymal stromal cells. Cytotherapy 10:364–375PubMedCrossRefGoogle Scholar
  5. 5.
    Schäfer R, Dominici M, Müller I et al (2009) Basic research and clinical applications of non-hematopoietic stem cells, 4–5 April 2008, Tübingen, Germany. Cytotherapy 11:245–255PubMedCrossRefGoogle Scholar
  6. 6.
    Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus host disease: a phase II study. Lancet 371:1579–1586PubMedCrossRefGoogle Scholar
  7. 7.
    Prockop DJ, Brenner M, Fibbe WE et al (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12:576–578PubMedCrossRefGoogle Scholar
  8. 8.
    Mayani H (1996) Composition and function of the hemopoietic microenvironment in human myeloid leukemia. Leukemia 10:1041–1047PubMedGoogle Scholar
  9. 9.
    Varga G, Kiss J, Varkonyi J et al (2007) Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Pathol Oncol Res 13:311–319PubMedCrossRefGoogle Scholar
  10. 10.
    Marcondes AM, Ramaakrishnan A, Deeg HJ (2009) Myloid malignancies and the marrow microenvironment: some recent studies in patients with MDS. Curr Canc Ther Rev 5:310–314CrossRefGoogle Scholar
  11. 11.
    Payne CM, Greenberg B, Cromey D et al (1987) Morphological evidence of an altered bone marrow microenvironment in patients with acute non-lymphoblastic leukemia and myelodysplastic disorders. Exp Hematol 15:143–153PubMedGoogle Scholar
  12. 12.
    Tauro S, Hepburn MD, Peddie CM et al (2002) Functional disturbance of marrow stromal microenvironment in the myelodysplastic syndromes. Leukemia 16:785–790PubMedCrossRefGoogle Scholar
  13. 13.
    Aizawa S, Nakano M, Iwase O et al (1999) Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro. Leuk Res 23:239–246PubMedCrossRefGoogle Scholar
  14. 14.
    Campioni D, Moretti S, Ferrari L et al (2006) Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematological disorders: correlation with bone marrow microenvironment. Haematologica 91:364–368PubMedGoogle Scholar
  15. 15.
    Dührsen U, Hossfeld DK (1996) Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 73:53–70PubMedCrossRefGoogle Scholar
  16. 16.
    Deeg HJ, Beckham C, Loken MR et al (2000) Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndromes. Leuk Lymphoma 37:405–414PubMedGoogle Scholar
  17. 17.
    Lopez-Villar O, Garcia JL, Sanchez-Guijo FM et al (2009) Both expanded and uncultured stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q-syndrome. Leukemia 23:664–672PubMedCrossRefGoogle Scholar
  18. 18.
    Menendez P, Catalina P, Rodriguez R et al (2009) Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 206:3131–3141PubMedCrossRefGoogle Scholar
  19. 19.
    Choumerianou DM, Dimitriou H, Perdikogianni C et al (2008) Study of oncogenic transformation in ex vivo expanded mesenchymal cells from pediatric bone marrow. Cell Prol 41:909–922CrossRefGoogle Scholar
  20. 20.
    Blau O, Baldus CD, Hofmann WK et al (2011) Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloblastic leukemia have distinct genetic abnormalities compared with leukemic blasts. Blood 118:5583–5592PubMedCrossRefGoogle Scholar
  21. 21.
    Klaus M, Stavroulaki E, Kastrinaki MC et al (2010) Reserves, functional, immunoregulatory and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cell Dev 19:1043–1054CrossRefGoogle Scholar
  22. 22.
    Dimitriou H, Linardakis E, Martimianaki G et al (2008) Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic malignancies. Cytotherapy 10:125–133PubMedCrossRefGoogle Scholar
  23. 23.
    Soenen-Cornu V, Tourino C, Bonnet ML et al (2005) Mesenchymal cells generated from patients with myelodysplastic syndrome (MDS) are devoid of chromosomal clonal markers and support short and long-term hematopoiesis in vitro. Oncogene 24:2441–2448PubMedCrossRefGoogle Scholar
  24. 24.
    Flores-Figueroa E, Arana-Trejo RM, Gutièrrez-Espìndola G et al (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29:215–224PubMedCrossRefGoogle Scholar
  25. 25.
    Garayoa M, Garcia JL, Santamaria C et al (2009) Mesenchymal cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23:1515–1527.7PubMedCrossRefGoogle Scholar
  26. 26.
    Ramakrishnan A, Awaya N, Bryant E et al (2006) The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS. Blood 108:772–773PubMedCrossRefGoogle Scholar
  27. 27.
    Arnulf B, Lecourt S, Soulier J et al (2007) Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21:158–163PubMedCrossRefGoogle Scholar
  28. 28.
    Burger JA, Kipps TJ (2002) Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 43:461–466PubMedCrossRefGoogle Scholar
  29. 29.
    Calligaris-Cappio F (2003) Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123:380–388CrossRefGoogle Scholar
  30. 30.
    Mudry RE, Fortney JE, York T et al (2000) Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 96:1926–1932PubMedGoogle Scholar
  31. 31.
    Ferretti E, Bertolotto M, Deaglio S et al (2011) A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia 25:1268–1277PubMedCrossRefGoogle Scholar
  32. 32.
    Balakrishnan K, Burger JA, Quiroga MP et al (2010) Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood 116:1083–1091PubMedCrossRefGoogle Scholar
  33. 33.
    Lagneaux L, Delforge A, Bron D et al (1998) Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91:2387–2396PubMedGoogle Scholar
  34. 34.
    Castro-Malaspina H, Gay RE, Resnick G et al (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU) and their progeny. Blood 56:289–301PubMedGoogle Scholar
  35. 35.
    Campioni D, Lanza F, Moretti S et al (2008) Loss of Thy-1 (CD90) antigen expression on mesenchymal stromal cells from haematological patients may be induced by in vitro angiogenic stimuli and is associated with peculiar functional and phenotypic characteristics. Cytotherapy 10:69–82PubMedCrossRefGoogle Scholar
  36. 36.
    Rooney DE (2001) Human cytogenetics: malignancy and acquired abnormalities. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Mitelman F (2005) Guidelines for cancer cytogenetics: supplement to an International System for Human Cytogenetics Nomenclature ISCN. Karger, BaselGoogle Scholar
  38. 38.
    Bigoni R, Cuneo A, Milani R et al (2001) Multilineage involvement in the 5q- syndrome: a fluorescent in situ hybridization study on bone marrow smears. Haematologica 86:375–381PubMedGoogle Scholar
  39. 39.
    Vianello F, Dazzi F (2008) Mesenchymal stem cells for graft-versus-host disease: a double edged sword. Leukemia 22:463–465PubMedCrossRefGoogle Scholar
  40. 40.
    Deeg HJ (2002) Marrow stroma in MDS: culprit or bystander? Leuk Res 26:687–688PubMedCrossRefGoogle Scholar
  41. 41.
    Kurtova AV, Balakrishanan K, Chen R et al (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistence. Blood 114:4441–4450PubMedCrossRefGoogle Scholar
  42. 42.
    Giannoni P, Scaglione S, Quarto R et al (2011) HGF-c-MET interaction prolongs chronic lymphocytic leukemic cells survival through STAT-3 phosphorylation: potential role of mesenchymal cells in the disease. Haematologica 96:1015–1023PubMedCrossRefGoogle Scholar
  43. 43.
    Ding W, Nowakowski GS, Knox TR et al (2009) Bi-directional activation between mesenchymal stem cells and CLL-B- cells: implication for CLL disease progression. Br J Haematol 147:471–483PubMedCrossRefGoogle Scholar
  44. 44.
    Tehranchi R, Woll PS, Anderson K et al (2010) Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med 363:1025–1037PubMedCrossRefGoogle Scholar
  45. 45.
    Carrara RCV, Orellana MD, Fontes AM et al (2007) Mesenchymal stem cells from patients with chronic myloid leukemia do not express BCR-ABL and have absence of chimerism after allogeneic bone marrow transplant. Braz J of Med Biol Res 40:57–67CrossRefGoogle Scholar
  46. 46.
    Bhatia R, McGlave PB, Dewald GW et al (1995) Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of the malignant stromal macrophages. Blood 85:3636–3645PubMedGoogle Scholar
  47. 47.
    Simmons PJ, Przepiorka D, Thomas ED et al (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432PubMedCrossRefGoogle Scholar
  48. 48.
    Kastrinaki MC, Pontikoglou C, Klaus M et al (2011) Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther 6:122–130PubMedCrossRefGoogle Scholar
  49. 49.
    Achille V, Mantelli M, Arrigo G et al (2011) Cell cycle phases and genetic profile of bone marrow derived mesenchymal stromal cells expanded in vitro from healthy donors. J Cell Biochem 112:1817–1821PubMedCrossRefGoogle Scholar
  50. 50.
    Foudah D, Redaelli S, Donzelli E et al (2009) Monitoring the genomic stability of in vitro cultured rat bone marrow-derived mesenchymal stem cells. Chromosome Res 17:1025–1039PubMedCrossRefGoogle Scholar
  51. 51.
    Ogawa M, LaRue AC, Watson P (2010) Hematopoietic stem cell origin of mesenchymal cells: opportunity for novel therapeutic approaches. Int J Hematol 91:353–359PubMedCrossRefGoogle Scholar
  52. 52.
    Flores-Figueroa E, Mayani H (2006) Chromosomal abnormalities in marrow stromal cells from myelodysplastic syndrome (MDS). Blood 108:3948–3949PubMedCrossRefGoogle Scholar
  53. 53.
    Yeh SP, Lo WJ, Liao YM et al (2010) Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol 91:163–172CrossRefGoogle Scholar
  54. 54.
    Shalapour S, Eckert C, Seeger K et al (2010) Leukemia-associated genetic aberrations in mesenchymal stem cell of children with acute lymphoblastic leukemia. J Mol Med 88:249–265PubMedCrossRefGoogle Scholar
  55. 55.
    Iwamoto S, Mihara K, Downing JR et al (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117:1049–1057PubMedCrossRefGoogle Scholar
  56. 56.
    Greenberg BR, Wilson FD, Woo L et al (1978) Cytogenetics of fibroblasts colonies in Ph1-positive chronic myelogenous leukemia. Blood 51:1039–1044PubMedGoogle Scholar
  57. 57.
    Wilson FD, Greenberg BR, Konrad PN et al (1978) Cytogenetic studies on bone marrow fibroblasts from a male–female hematopoietic chimera. Transplantation 25:87–88PubMedCrossRefGoogle Scholar
  58. 58.
    Jootar S, Pornprasertsud N, Petvises S et al (2006) Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res 30:1493–1498PubMedCrossRefGoogle Scholar
  59. 59.
    Dominici M, Le Blanc K, Müller I et al (2006) Minimal criteria for defining mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  60. 60.
    Horwitz EM (2009) Culture conditions shape mesenchymal stromal cells phenotype and functions. Cytotherapy 11:101–102PubMedCrossRefGoogle Scholar
  61. 61.
    Haniffa MA, Collin MP, Buckley CD et al (2009) Mesenchymal stem cells: the fibroblasts new clothes? Haematologica 94:258–263PubMedCrossRefGoogle Scholar
  62. 62.
    Bononi A, Lanza F, Ferrari L et al (2009) Predictive value of hematological and phenotypical parameters on postchemotherapy leukocyte recovery. Cytometry B Clin Cytom 76B:328–333CrossRefGoogle Scholar
  63. 63.
    Nguyen HG, Ravid K (2010) Polyplody: mechanisms and cancer promotion in hematopoietic and other cells. Adv Exp Med Biol 676:105–122PubMedCrossRefGoogle Scholar
  64. 64.
    Oberringer M, Jennewein M, Motsch SE et al (2005) Different cell cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem Cell Biol 123:595–603PubMedCrossRefGoogle Scholar
  65. 65.
    Lee CC, Putnam AJ, Miranti CK et al (2004) Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration and cytokinesis. Oncogene 23:5193–5202PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang ZX, Guan LX, Zhang K et al (2007) Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol Int 31:645–648PubMedCrossRefGoogle Scholar
  67. 67.
    Ahmadbeigi N, Shafiee A, Seyedjafari E et al (2011) Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Prolif 44:67–68PubMedCrossRefGoogle Scholar
  68. 68.
    Döhner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. New Engl J of Med 343:1910–1916CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Diana Campioni
    • 1
  • M. Antonella Bardi
    • 1
  • Francesco Cavazzini
    • 1
  • Elisa Tammiso
    • 1
  • Elisa Pezzolo
    • 1
  • Emma Pregnolato
    • 1
  • Eleonora Volta
    • 1
  • Antonio Cuneo
    • 1
  • Francesco Lanza
    • 2
  1. 1.Section of HematologyUniversity-S. Anna HospitalFerraraItaly
  2. 2.Section of HematologyHospital of CremonaCremonaItaly

Personalised recommendations