Annals of Hematology

, Volume 91, Issue 10, pp 1519–1531 | Cite as

Metabolic factors and blood cancers among 578,000 adults in the metabolic syndrome and cancer project (Me-Can)

  • Gabriele Nagel
  • Tanja Stocks
  • Daniela Späth
  • Anette Hjartåker
  • Björn Lindkvist
  • Göran Hallmans
  • Håkan Jonsson
  • Tone Bjørge
  • Jonas Manjer
  • Christel Häggström
  • Anders Engeland
  • Hanno Ulmer
  • Randi Selmer
  • Hans Concin
  • Pär Stattin
  • Richard F. Schlenk
Original Article

Abstract

We investigated associations between metabolic factors and blood cancer subtypes. Data on body mass index (BMI), blood pressure, blood glucose, total cholesterol, and triglycerides from seven prospective cohorts were pooled (n = 578,700; mean age = 44 years). Relative risks of blood cancers were calculated from Cox regression models. During mean follow-up of 12 years, 2,751 incident and 1,070 fatal cases of blood cancers occurred. Overall, higher BMI was associated with an increased blood cancer risk. In gender-specific subgroup analyses, BMI was positively associated with blood cancer risk (p = 0.002), lymphoid neoplasms (p = 0.01), and Hodgkin's lymphoma (p = 0.02) in women. Further associations with BMI were found for high-grade B-cell lymphoma (p = 0.02) and chronic lymphatic leukemia in men (p = 0.05) and women (p = 0.01). Higher cholesterol levels were inversely associated with myeloid neoplasms in women (p = 0.01), particularly acute myeloid leukemia (p = 0.003), and glucose was positively associated with chronic myeloid leukemia in women (p = 0.03). In men, glucose was positively associated with risk of high-grade B-cell lymphoma and multiple myeloma, while cholesterol was inversely associated with low-grade B-cell lymphoma. The metabolic syndrome score was related to 48 % increased risk of Hodgkin's lymphoma among women. BMI showed up as the most consistent risk factor, particularly in women. A clear pattern was not found for other metabolic factors.

Keywords

Cancer Biomarker Epidemiology Leukemia Lymphoma 

Notes

Acknowledgments

We thank: in Norway, the screening team at the former National Health Screening Service of Norway, now the Norwegian Institute of Public Health, the contributing research centers delivering data to Cohort of Norway and Hilde Koch Lie research assistant at the Cancer Registry of Norway; in the Vorarlberg Heath Monitoring and Prevention Programme, Elmar Stimpfl, data base manager, Karin Parschalk at the cancer registry, Markus Wallner, Christian Bernhard, Andrea Kaufmann, Gabriela Dür from the Vorarlberg State Government, at the University Ulm, Andrea Kleiner, Daniela Oesterle, and Jürgen Salk for their excellent technical assistance; in the Västerbotten Intervention Project, Åsa Ågren, project data base manager at the Medical Biobank, Umeå University, Sweden; and in the Malmö Preventive Project, Anders Dahlin, data base manager. We gratefully thank the bwGRiD project (member of the German D-Grid initiative, funded by the Ministry for Education and Research and the Ministry for Science, Research and Arts Baden-Wuerttemberg. http://www.bw-grid.de 2010) for the computational resources. This work was supported by the World Cancer Research Fund (Grant 2007/09).

Conflict of interest

None declared.

Supplementary material

277_2012_1489_MOESM1_ESM.doc (108 kb)
Supplemental table Relative risks (RRs) with 95% confidence intervals (CIs) of selected blood cancer entities by quintiles and Z-scores of individual and combined metabolic factors by sex (DOC 108 kb)

References

  1. 1.
    Adamson P, Bray F, Costantini AS et al (2007) Time trends in the registration of Hodgkin and non-Hodgkin lymphomas in Europe. Eur J Cancer 43(2):391–401PubMedCrossRefGoogle Scholar
  2. 2.
    Swerdlow SH, Campo E, Harris N et al (2008) WHO classification of of tumours of haematopoetic and lymphoid tissues, 4th edn. WHO, LyonGoogle Scholar
  3. 3.
    Morton LM, Turner JJ, Cerhan JR et al (2007) Proposed classification of lymphoid neoplasms for epidemiologic research from the pathology working group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood 110(2):695–708PubMedCrossRefGoogle Scholar
  4. 4.
    Alexander DD, Mink PJ, Adami H-O et al (2007) The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer 120(Suppl 12):1–39PubMedCrossRefGoogle Scholar
  5. 5.
    Alexander DD, Mink PJ, Adami H-O et al (2007) Multiple myeloma: a review of the epidemiologic literature. Int J Cancer 120(Suppl 12):40–61PubMedCrossRefGoogle Scholar
  6. 6.
    Eckel RH, Alberti KGMM, Grundy SM, Zimmet PZ (2010) The metabolic syndrome. Lancet 375(9710):181–183PubMedCrossRefGoogle Scholar
  7. 7.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348(17):1625–1638PubMedCrossRefGoogle Scholar
  8. 8.
    Lichtman MA (2010) Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15(10):1083–1101PubMedCrossRefGoogle Scholar
  9. 9.
    Willett EV, Morton LM, Hartge P et al (2008) Non-Hodgkin lymphoma and obesity: a pooled analysis from the interlymph consortium. Int J Cancer 122(9):2062–2070PubMedCrossRefGoogle Scholar
  10. 10.
    Britton JA, Khan AE, Rohrmann S et al (2008) Anthropometric characteristics and non-Hodgkin's lymphoma and multiple myeloma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Haematologica 93(11):1666–1677PubMedCrossRefGoogle Scholar
  11. 11.
    Ross JA, Parker E, Blair CK, Cerhan JR, Folsom AR (2004) Body mass index and risk of leukemia in older women. Cancer Epidemiol Biomarkers Prev 13(11 Pt 1):1810–1813PubMedGoogle Scholar
  12. 12.
    Tulinius H, Sigfússon N, Sigvaldason H, Bjarnadóttir K, Tryggvadóttir L (1997) Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev 6(11):863–873PubMedGoogle Scholar
  13. 13.
    Chang ET, Hjalgrim H, Smedby KE et al (2005) Body mass index and risk of malignant lymphoma in Scandinavian men and women. J Natl Cancer Inst 97(3):210–218PubMedCrossRefGoogle Scholar
  14. 14.
    Khan AE, Gallo V, Linseisen J et al (2008) Diabetes and the risk of non-Hodgkin's lymphoma and multiple myeloma in the European Prospective Investigation into Cancer and Nutrition. Haematologica 93(6):842–850PubMedCrossRefGoogle Scholar
  15. 15.
    Lim U, Gayles T, Katki HA et al (2007) Serum high-density lipoprotein cholesterol and risk of non-Hodgkin lymphoma. Cancer Res 67(11):5569–5574PubMedCrossRefGoogle Scholar
  16. 16.
    Ulmer H, Borena W, Rapp K et al (2009) Serum triglyceride concentrations and cancer risk in a large cohort study in Austria. Br J Cancer 101(7):1202–1206PubMedCrossRefGoogle Scholar
  17. 17.
    Mitri J, Castillo J, Pittas AG (2008) Diabetes and risk of non-Hodgkin's lymphoma: a meta-analysis of observational studies. Diabetes Care 31(12):2391–2397PubMedCrossRefGoogle Scholar
  18. 18.
    Stocks T, Borena W, Strohmaier S et al (2010) Cohort profile: the metabolic syndrome and cancer project (Me-Can). Int J Epidemiol 39(3):660–667PubMedCrossRefGoogle Scholar
  19. 19.
    Eurostat. European shortlist for causes of death. 2009Google Scholar
  20. 20.
    Morton LM, Wang SS, Cozen W et al (2008) Etiologic heterogeneity among non-Hodgkin lymphoma subtypes. Blood 112(13):5150–5160PubMedCrossRefGoogle Scholar
  21. 21.
    Wood AM, White I, Thompson SG, Lewington S, Danesh J (2006) Regression dilution methods for meta-analysis: assessing long-term variability in plasma fibrinogen among 27,247 adults in 15 prospective studies. Int J Epidemiol 35(6):1570–1578PubMedCrossRefGoogle Scholar
  22. 22.
    Greenland S (2008) Multiple comparisons and association selection in general epidemiology. Int J Epidemiol 37(3):30–434PubMedCrossRefGoogle Scholar
  23. 23.
    Kahn R, Buse J, Ferrannini E, Stern M (2005) The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28(9):2289–2304PubMedCrossRefGoogle Scholar
  24. 24.
    Larsson SC, Wolk A (2008) Overweight and obesity and incidence of leukemia: a meta-analysis of cohort studies. Int J Cancer 122(6):1418–1421PubMedCrossRefGoogle Scholar
  25. 25.
    Banker DE, Mayer SJ, Li HY et al (2004) Cholesterol synthesis and import contribute to protective cholesterol increments in acute myeloid leukemia cells. Blood 104(6):1816–1824PubMedCrossRefGoogle Scholar
  26. 26.
    Sánchez-Martín CC, Dávalos A, Martín-Sánchez C et al (2007) Cholesterol starvation induces differentiation of human leukemia HL-60 cells. Cancer Res 67(7):3379–3386PubMedCrossRefGoogle Scholar
  27. 27.
    Ahn J, Lim U, Weinstein SJ et al (2009) Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomarkers Prev 18(11):2814–2821PubMedCrossRefGoogle Scholar
  28. 28.
    Strasak AM, Pfeiffer RM, Brant LJ et al (2009) Time-dependent association of total serum cholesterol and cancer incidence in a cohort of 172,210 men and women: a prospective 19-year follow-up study. Ann Oncol 20(6):1113–1120PubMedCrossRefGoogle Scholar
  29. 29.
    Casalou C, Costa A, Carvalho T et al (2011) Cholesterol regulates VEGFR-1 (FLT-1) expression and signaling in acute leukemia cells. Mol Cancer Res 9(2):215–224PubMedCrossRefGoogle Scholar
  30. 30.
    Engeland A, Tretli S, Hansen S, Bjørge T (2007) Height and body mass index and risk of lymphohematopoietic malignancies in two million Norwegian men and women. Am J Epidemiol 165(1):44–52PubMedCrossRefGoogle Scholar
  31. 31.
    Larsson SC, Wolk A (2007) Obesity and risk of non-Hodgkin's lymphoma: a meta-analysis. Int J Cancer 121(7):1564–1570PubMedCrossRefGoogle Scholar
  32. 32.
    Gainsford T, Willson TA, Metcalf D et al (1996) Leptin can induce proliferation, differentiation, and functional activation of hematopoietic cells. Proc Natl Acad Sci USA 93(25):14564–14568PubMedCrossRefGoogle Scholar
  33. 33.
    Claycombe K, King LE, Fraker PJ (2008) A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci USA 105(6):2017–2021PubMedCrossRefGoogle Scholar
  34. 34.
    Cowey S, Hardy RW (2006) The metabolic syndrome: a high-risk state for cancer? Am J Pathol 169(5):1505–1522PubMedCrossRefGoogle Scholar
  35. 35.
    Willett EV, Roman E (2006) Obesity and the risk of Hodgkin lymphoma (United Kingdom). Cancer Causes Control 17(8):1103–1106PubMedCrossRefGoogle Scholar
  36. 36.
    MacInnis RJ, English DR, Hopper JL, Giles GG (2005) Body size and composition and the risk of lymphohematopoietic malignancies. J Natl Cancer Inst 97(15):1154–1157PubMedCrossRefGoogle Scholar
  37. 37.
    Reseland JE, Reppe S, Olstad OK et al (2009) Abnormal adipokine levels and leptin-induced changes in gene expression profiles in multiple myeloma. Eur J Haematol 83(5):460–470PubMedCrossRefGoogle Scholar
  38. 38.
    Maskarinec G, Erber E, Gill J, Cozen W, Kolonel LN (2008) Overweight and obesity at different times in life as risk factors for non-Hodgkin's lymphoma: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev 17(1):196–203PubMedCrossRefGoogle Scholar
  39. 39.
    Skibola CF, Holly EA, Forrest MS et al (2004) Body mass index, leptin and leptin receptor polymorphisms, and non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 13(5):779–786PubMedGoogle Scholar
  40. 40.
    Chang CM, Wang SS, Dave BJ et al (2010) Risk factors for non-Hodgkin lymphoma subtypes defined by histology and t(14;18) in a population-based case-control study. Int J Cancer. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20949561. Accessed May 12, 2011
  41. 41.
    Cerhan JR, Bernstein L, Severson RK et al (2005) Anthropometrics, physical activity, related medical conditions, and the risk of non-Hodgkin lymphoma. Cancer Causes Control 16(10):1203–1214PubMedCrossRefGoogle Scholar
  42. 42.
    Rosengren A, Himmelmann A, Wilhelmsen L, Branehög I, Wedel H (1998) Hypertension and long-term cancer incidence and mortality among Swedish men. J Hypertens 16(7):933–940PubMedCrossRefGoogle Scholar
  43. 43.
    Jee SH, Ohrr H, Sull JW et al (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293(2):194–202PubMedCrossRefGoogle Scholar
  44. 44.
    Rousseau M-C, Parent M-E, Pollak MN, Siemiatycki J (2006) Diabetes mellitus and cancer risk in a population-based case–control study among men from Montreal, Canada. Int J Cancer 118(8):2105–2109PubMedCrossRefGoogle Scholar
  45. 45.
    Freund GG, Kulas DT, Mooney RA (1993) Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI 8226. J Immunol 151(4):1811–1820PubMedGoogle Scholar
  46. 46.
    Qiang Y-W, Yao L, Tosato G, Rudikoff S (2004) Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103(1):301–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gabriele Nagel
    • 1
    • 2
  • Tanja Stocks
    • 3
    • 4
  • Daniela Späth
    • 5
  • Anette Hjartåker
    • 6
  • Björn Lindkvist
    • 7
  • Göran Hallmans
    • 8
  • Håkan Jonsson
    • 9
  • Tone Bjørge
    • 10
    • 11
  • Jonas Manjer
    • 12
  • Christel Häggström
    • 3
  • Anders Engeland
    • 10
    • 11
  • Hanno Ulmer
    • 13
  • Randi Selmer
    • 11
  • Hans Concin
    • 2
  • Pär Stattin
    • 3
    • 14
  • Richard F. Schlenk
    • 5
  1. 1.Institute of Epidemiology and Medical BiometryUlm UniversityUlmGermany
  2. 2.Agency for Preventive and Social MedicineBregenzAustria
  3. 3.Department of Surgical and Perioperative Sciences, Urology and AndrologyUmeå UniversityUmeåSweden
  4. 4.Institute of Preventive MedicineCopenhagen University HospitalCopenhagenDenmark
  5. 5.Department of Internal Medicine IIIUniversity Hospital of UlmUlmGermany
  6. 6.Cancer Registry of NorwayOsloNorway
  7. 7.Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  8. 8.Department of Public health and Clinical Medicine, Nutritional ResearchUmeå UniversityUmeåSweden
  9. 9.Department of Radiation Science, OncologyUmeå UniversityUmeåSweden
  10. 10.Department of Public Health and Primary Health CareUniversity of BergenBergenNorway
  11. 11.Norwegian Institute of Public HealthOslo/BergenNorway
  12. 12.Department of Surgery, Malmö University HospitalLund UniversityMalmöSweden
  13. 13.Department of Medical Statistics, Informatics and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
  14. 14.Department of Surgery, Urology ServiceMemorial Sloan-Kettering Cancer Center, New YorkNew YorkUSA

Personalised recommendations