Annals of Hematology

, Volume 91, Issue 10, pp 1513–1518 | Cite as

Mechanisms of defective erythropoiesis and anemia in pediatric acute lymphoblastic leukemia (ALL)

  • MacGregor Steele
  • Aru NarendranEmail author
Review Article


Anemia frequently accompanies the diagnosis of acute lymphoblastic leukemia (ALL) in children and is considered to be one of the most common clinical complications of the disease. In addition, a low hemoglobin (Hb) level is often responsible for fatigue and other associated symptoms that cause a decline in the quality of life of these children. Traditionally, a number of contributing factors such as overcrowding of the marrow, coexisting infections, and nutritional deficits have been used to explain this phenomenon. However, recent advances in in vivo modeling and real-time ultrastructural analytical techniques have enabled researchers to examine leukemic bone marrow (BM) microenvironment more closely and helped to build mechanistic models of this process. Importantly, data from these studies show that in the majority of cases, the required stem cell populations and the erythropoietic growth mechanisms remain intact in leukemia. In this report, we aim to review the current state of knowledge regarding the cellular and molecular mechanisms implicated in the altered erythropoiesis at the time of diagnosis of leukemia. We propose that further understanding of the mechanisms of anemia in leukemia may help to manage some of its clinical consequences more effectively as well as to yield key insight into the process of leukemogenesis itself.


Pediatric leukemia Hematopoiesis Erythropoietin Anemia 



We thank Gaya Narendran for assistance with the illustration provided in this review. This study was supported, in part, by the Alberta Children’s Hospital Foundation.


  1. 1.
    Ching-Hon Pui (2006) Acute lymphoblastic leukemia. In: Ching-Hon Pui (ed) Childhood leukemias, 2nd edn. Cambridge University Press, pp 439–472Google Scholar
  2. 2.
    Michon J (2002) Incidence of anemia in pediatric cancer patients in Europe: results of a large, international survey. Med Pediatr Oncol 39(4):448–450PubMedCrossRefGoogle Scholar
  3. 3.
    Ludwig H, Fritz E (1998) Anemia in cancer patients. Semin Oncol 25(3 Suppl 7):2–6PubMedGoogle Scholar
  4. 4.
    Jacober ML, Mamoni RL, Lima CS, Dos Anjos BL, Grotto HZ (2007) Anaemia in patients with cancer: role of inflammatory activity on iron metabolism and severity of anaemia. Med Oncol 24(3):323–329PubMedCrossRefGoogle Scholar
  5. 5.
    Graber SE, Krantz SB (1978) Erythropoietin and the control of red cell production. Annu Rev Med 29:51–66PubMedCrossRefGoogle Scholar
  6. 6.
    Hellebostad M, Hågå P, Cotes PM (1988) Serum immunoreactive erythropoietin in healthy normal children. Br J Haematol 70(2):247–250PubMedCrossRefGoogle Scholar
  7. 7.
    Kalmanti M, Kalmantis T (1989) Committed erythroid progenitors and erythropoietin levels in anemic children with lymphomas and tumors. Pediatr Hematol Oncol 6(2):85–93PubMedCrossRefGoogle Scholar
  8. 8.
    Hellebostad M, Marstrander J, Slørdahl SH, Cotes PM, Refsum HE (1990) Serum immunoreactive erythropoietin in children with acute leukaemia at various stages of disease—and the effects of treatment. Eur J Haematol 44(3):159–164PubMedCrossRefGoogle Scholar
  9. 9.
    Dowd MD, Morgan ER, Langman CB, Murphy S (1997) Serum erythropoietin levels in children with leukemia. Med Pediatr Oncol 28(4):259–267PubMedCrossRefGoogle Scholar
  10. 10.
    Kim M, Lee J, Wu C, Cho S, Lee K (2002) Defective erythropoiesis in bone marrow is a mechanism of anemia in children with cancer. J Kor Med Sci 17(3):337–340Google Scholar
  11. 11.
    Corazza F, Beguin Y, Bergmann P, André M, Ferster A, Devalck C, Fondu P, Buyse M, Sariban E (1998) Anemia in children with cancer is associated with decreased erythropoietic activity and not with inadequate erythropoietin production. Blood 92(5):1793–1798PubMedGoogle Scholar
  12. 12.
    Johannsen H, Jelkmann W, Wiedemann G, Otte M, Wagner T (1989) Erythropoietin/haemoglobin relationship in leukaemia and ulcerative colitis. Eur J Haematol 43(3):201–206PubMedCrossRefGoogle Scholar
  13. 13.
    Bachmann S, Le Hir M, Eckardt KU (1993) Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41(3):335–341PubMedCrossRefGoogle Scholar
  14. 14.
    Frede S, Freitag P, Geuting L, Konietzny R, Fandrey J (2011) Oxygen-regulated expression of the erythropoietin gene in the human renal cell line REPC. Blood 117(18):4905–4914PubMedCrossRefGoogle Scholar
  15. 15.
    Lin CS, Lim SK, D’Agati V, Costantini F (1996) Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 15;10(2): 154–64Google Scholar
  16. 16.
    Testa U (2004) Apoptotic mechanisms in the control of erythropoiesis. Leukemia 18(7):1176–1199PubMedCrossRefGoogle Scholar
  17. 17.
    Wojchowski DM, Gregory RC, Miller CP, Pondit AK, Pircher TJ (1999) Signal transduction in the erythropoietin system. Exp Cell Res 253:143–156PubMedCrossRefGoogle Scholar
  18. 18.
    Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 98(2):181–191PubMedCrossRefGoogle Scholar
  19. 19.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A 88(13):5680–5684PubMedCrossRefGoogle Scholar
  20. 20.
    Semenza GL (2000) HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev 19(1–2):59–65PubMedCrossRefGoogle Scholar
  21. 21.
    Wellmann S, Guschmann M, Griethe W, Eckert C, von Stackelberg A, Lottaz C, Moderegger E, Einsiedel HG, Eckardt KU, Henze G, Seeger K (2004) Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia 18(5):926–933PubMedCrossRefGoogle Scholar
  22. 22.
    Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA (2003) The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood 102(5):1634–1640PubMedCrossRefGoogle Scholar
  23. 23.
    Weiss L, Geduldig U (1991) Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78(4):975–990PubMedGoogle Scholar
  24. 24.
    Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J (1997) Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 150(3):815–821PubMedGoogle Scholar
  25. 25.
    Adelman DM, Maltepe E, Simon MC (2000) HIF-1 is essential for multilineage hematopoiesis in the embryo. Adv Exp Med Biol 475:275–284PubMedCrossRefGoogle Scholar
  26. 26.
    Drogat B, Kalucka J, Gutiérrez L, Hammad H, Goossens S, Farhang Ghahremani M, Bartunkova S, Haigh K, Deswarte K, Nyabi O, Naessens M, Ferrara N, Klingmüller U, Lambrecht BN, Nagy A, Philipsen S, Haigh JJ (2010) Vegf regulates embryonic erythroid development through Gata1 modulation. Blood 116(12):2141–2151PubMedCrossRefGoogle Scholar
  27. 27.
    Urabe A, Murphy MJ Jr, Haghbin M, Gee TS (1979) Erythroid progenitors (BFU-e and CFU-e) in acute leukaemia. J Clin Pathol 32(7):666–669PubMedCrossRefGoogle Scholar
  28. 28.
    Dainiak N, Kulkarni V, Howard D, Kalmanti M, Dewey MC, Hoffman R (1983) Mechanisms of abnormal erythropoiesis in malignancy. Cancer 51(6):1101–1106PubMedCrossRefGoogle Scholar
  29. 29.
    Praloran V, Klausman M, Naud MF, Harousseau JL (1989) Blood erythroid progenitors (CFU-E and BFU-E) in acute lymphoblastic leukemias. Blut 58(2):75–78PubMedCrossRefGoogle Scholar
  30. 30.
    Estrov Z, Freedman MH (1991) Acute lymphoblastic leukemia blast cells do not inhibit bone marrow hematopoietic progenitor colony formation. Exp Hematol 19(3):221–225PubMedGoogle Scholar
  31. 31.
    Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322(5909):1861–1865PubMedCrossRefGoogle Scholar
  32. 32.
    Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157PubMedCrossRefGoogle Scholar
  33. 33.
    Hu X, Shen H, Tian C, Yu H, Zheng G, XuFeng R, Ju Z, Xu J, Wang J, Cheng T (2009) Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood 114(18):3783–3792PubMedCrossRefGoogle Scholar
  34. 34.
    Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J, Boxer LM (2004) Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 103:1043–1049PubMedCrossRefGoogle Scholar
  35. 35.
    Inthal A, Krapf G, Beck D, Joas R, Kauer MO, Orel L, Fuka G, Mann G, Panzer-Grümayer ER (2008) Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clin Cancer Res 14(22):7196–7204PubMedCrossRefGoogle Scholar
  36. 36.
    Tsuzuki S, Seto M, Greaves M, Enver T (2004) Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci U S A 101:8443–8448PubMedCrossRefGoogle Scholar
  37. 37.
    Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD (2006) TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 103:15166–15171PubMedCrossRefGoogle Scholar
  38. 38.
    Choi Y, Elagib KE, Goldfarb AN (2005) AML-1-ETO-mediated erythroid inhibition: new paradigms for differentiation blockade by a leukemic fusion protein. Crit Rev Eukaryot Gene Expr 15:207–216PubMedCrossRefGoogle Scholar
  39. 39.
    Gaynon PS, Angiolillo AL, Carroll WL, Nachman JB, Trigg ME, Sather HN, Hunger SP, Devidas M, Children’s Oncology Group (2010) Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia 24(2):285–297, Epub 2009 Dec 17PubMedCrossRefGoogle Scholar
  40. 40.
    Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH, Carroll WL. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. J Clin Oncol. 2012 Mar 12. [Epub ahead of print]Google Scholar
  41. 41.
    Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, Zimmermann M, Lampert F, Havers W, Niethammer D (1994) Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 84(9):3122–3133PubMedGoogle Scholar
  42. 42.
    Donadieu J, Auclerc MF, Baruchel A, Leblanc T, Landman-Parker J, Perel Y, Michel G, Cornu G, Bordigoni P, Sommelet D, Leverger G, Hill C, Schaison G (1998) Critical study of prognostic factors in childhood acute lymphoblastic leukaemia: differences in outcome are poorly explained by the most significant prognostic variables. Fralle Group. French Acute Lymphoblastic Leukaemia study group. Br J Haematol 102(3):729–739PubMedCrossRefGoogle Scholar
  43. 43.
    Hann I, Vora A, Harrison G, Harrison C, Eden O, Hill F, Gibson B, Richards S (2001) UK Medical Research Council’s Working Party on Childhood Leukaemia. Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukaemia XI protocol. Br J Haematol 113(1):103–114PubMedCrossRefGoogle Scholar
  44. 44.
    Sandoval C, Head DR, Mirro J Jr, Behm FG, Ayers GD, Raimondi SC (1992) Translocation t(9;11)(p21;q23) in pediatric de novo and secondary acute myeloblastic leukemia. Leukemia 6(6):513–519PubMedGoogle Scholar
  45. 45.
    Teuffel O, Stanulla M, Cario G, Ludwig WD, Rottgers S, Schafer BW, Zimmermann M, Schrappe M, Niggli FK (2008) Anemia and survival in childhood acute lymphoblastic leukemia. Haematologica 93(11):1652–1657PubMedCrossRefGoogle Scholar
  46. 46.
    Carlesso N, Cardoso AA (2010) Stem cell regulatory niches and their role in normal and malignant hematopoiesis. Curr Opin Hematol 17(4):281–286PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Division of Pediatric Hematology, Alberta Children’s HospitalCalgaryCanada
  2. 2.Division of Oncology, Alberta Children’s HospitalCalgaryCanada
  3. 3.Pediatric Oncology Experimental Therapeutics Investigators Consortium (POETIC) Laboratory for Pre-Clinical and Drug Discovery StudiesUniversity of CalgaryCalgaryCanada
  4. 4.Division of Pediatric Oncology, Alberta Children’s HospitalCalgaryCanada

Personalised recommendations