Annals of Hematology

, Volume 91, Issue 8, pp 1221–1233

Prognostic significance of combined MN1, ERG, BAALC, and EVI1 (MEBE) expression in patients with myelodysplastic syndromes

  • Felicitas Thol
  • Haiyang Yun
  • Ann-Kathrin Sonntag
  • Frederik Damm
  • Eva M. Weissinger
  • Jürgen Krauter
  • Katharina Wagner
  • Michael Morgan
  • Martin Wichmann
  • Gudrun Göhring
  • Gesine Bug
  • Oliver Ottmann
  • Wolf-Karsten Hofmann
  • Axel Schambach
  • Brigitte Schlegelberger
  • Torsten Haferlach
  • David Bowen
  • Ken Mills
  • Arnold Ganser
  • Michael Heuser
Original Article

Abstract

Overexpression of MN1, ERG, BAALC, and EVI1 (MEBE) genes in cytogenetically normal acute myeloid leukemia (AML) patients is associated with poor prognosis, but their prognostic effect in patients with myelodysplastic syndromes (MDS) has not been studied systematically. Expression data of the four genes from 140 MDS patients were combined in an additive score, which was validated in an independent patient cohort of 110 MDS patients. A high MEBE score, defined as high expression of at least two of the four genes, predicted a significantly shorter overall survival (OS) (HR 2.29, 95 % CI 1.3–4.09, P = .005) and time to AML progression (HR 4.83, 95 % CI 2.01–11.57, P < .001) compared to a low MEBE score in multivariate analysis independent of karyotype, percentage of bone marrow blasts, transfusion dependence, ASXL1, and IDH1 mutation status. In a validation cohort of 110 MDS patients, a high MEBE score predicted shorter OS (HR 1.77; 95 % CI 1.04–3.0, P = .034) and time to AML progression (HR 3.0, 95 % CI 1.17–7.65, P = .022). A high MEBE expression score is an unfavorable prognostic marker in MDS and is associated with an increased risk for progression to AML. Expression of the MEBE genes is regulated by FLI1 and c-MYC, which are potential upstream targets of the MEBE signature.

Keywords

MDS Prognosis Gene expression Score Splicing 

Supplementary material

277_2012_1457_MOESM1_ESM.doc (102 kb)
Table S1Comparison of clinical and molecular characteristics of MDS patients with low or high MN1 expression. (DOC 102 kb)
277_2012_1457_MOESM2_ESM.doc (101 kb)
Table S2Comparison of clinical and molecular characteristics of MDS patients with low or high ERG expression. (DOC 101 kb)
277_2012_1457_MOESM3_ESM.doc (101 kb)
Table S3Comparison of clinical and molecular characteristics of MDS patients with low or high BAALC expression. (DOC 101 kb)
277_2012_1457_MOESM4_ESM.doc (102 kb)
Table S4Comparison of clinical and molecular characteristics of MDS patients with low or high EVI1 expression. (DOC 102 kb)
277_2012_1457_MOESM5_ESM.doc (44 kb)
Table S5Correlation between MN1, ERG, BAALC and EVI1 expression in MDS patients. (DOC 43 kb)
277_2012_1457_MOESM6_ESM.doc (126 kb)
Table S6List of gene sets enriched or depleted in MDS patients with high MEBE expression score. (DOC 126 kb)
277_2012_1457_MOESM7_ESM.doc (42 kb)
Table S7Primers used to quantify expression of mouse Mn1, Erg, Baalc, and Evi1. (DOC 42 kb)
277_2012_1457_MOESM8_ESM.doc (206 kb)
Supplemental Figure S1Prognostic impact of individual gene expression markers in MDS patients in the validation cohort. Kaplan-Meier curves for overall survival and time to AMLtransformation are shown. (A) Overall survival in MDS patients with low or high MN1 expression. (B) Time to AML transformation in MDS patients with low or high MN1 expression. (C) Overall survival in MDS patients with low or high ERG expression. (D) Time to AML transformation in MDS patients with low or high ERG expression. (E) Overall survival in MDS patients with low or high BAALC expression. (F) Time to AML transformation in MDS patients with low or high BAALC expression. (G) Overall survival in MDS patients with high EVI1 vs. low EVI1 expression (see Materials and Methods for definition of high vs. low expression). Time to AML transformation in MDS patients with high EVI1 vs. low EVI1 expression (see Materials and Methods for definition of high vs. low expression). (DOC 205 kb)
277_2012_1457_MOESM9_ESM.doc (124 kb)
Supplemental Figure S2Prognostic impact of the MEBE expression score in younger and older MDS patients. (A) Overall survival in MDS patients younger than 66 years of age with low or high MEBE score. (B) Time to AML transformation in MDS patients younger than 66 years of age with low or high MEBE score. (C) Overall survival in MDS patients 66 years of age or older with low or high MEBE score. Time to AML transformation in MDS patients 66 years of age or older with low) or high MEBE score. (DOC 124 kb)
277_2012_1457_MOESM10_ESM.doc (122 kb)
Supplemental Figure S3Prognostic impact of the MEBE expression score determined from bone marrow or peripheral blood in MDS patients. (A) Only bone marrow (BM) samples considered: Overall survival in MDS patients with low or high MEBE score. (B) Only bone marrow samples (BM) considered: Time to AML transformation in MDS patients with low or high MEBE score. (C) Only peripheral blood samples considered: Overall survival in MDS patients with low or high MEBE score. (D) Only peripheral blood samples considered: Time to AML transformation in MDS patients with low or high MEBE score (DOC 122 kb)
277_2012_1457_MOESM11_ESM.doc (70 kb)
Supplemental Figure S4Prognostic impact of the MEBE expression score in MDS patients with 10-19 percent bone marrow blasts. (A) Overall survival in MDS patients with low or high MEBE score in patients with 10-19 percent bone marrow blasts. (B) Time to AML transformation in MDS patients with low or high MEBE score in patients with 10-19 percent bone marrow blasts. (DOC 70 kb)
277_2012_1457_MOESM12_ESM.doc (142 kb)
Supplemental Figure S5Correlation of expression classes (high or low) of individual gene expression markers of the MEBE score. Each row represents one patient. Yellow, low expression or low MEBE score. Blue, high expression or high MEBE score. (DOC 142 kb)
277_2012_1457_MOESM13_ESM.doc (97 kb)
Supplemental Figure S6Effect of constitutive expression of Fli1 and c-Myc on expression levels of Mn1, Erg, Baalc, and Evi1 in mouse bone marrow cells. Fli1, c-Myc, or a control vector was stably expressed in mouse bone marrow cells. Transduced cells were sorted and harvested after 7 days, and cDNA was prepared for expression analysis. Abl was used as a housekeeping gene, and expression ratios of transgene expressing cells vs. control vector-transduced cells are shown (n=3, mean ± SD). Expression of Baalc could be detected by nested PCR only. (DOC 97 kb)

References

  1. 1.
    Cazzola M, Malcovati L (2010) Prognostic classification and risk assessment in myelodysplastic syndromes. Hematol Oncol Clin North Am 24:459–468PubMedCrossRefGoogle Scholar
  2. 2.
    Greenberg P, Cox C, LeBeau MM et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088PubMedGoogle Scholar
  3. 3.
    Garcia-Manero G, Shan J, Faderl S et al (2008) A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia 22:538–543PubMedCrossRefGoogle Scholar
  4. 4.
    Thol F, Friesen I, Damm F et al (2011) Prognostic Significance of ASXL1 Mutations in patients with myelodysplastic syndromes. J Clin Oncol 29:2499–2506PubMedCrossRefGoogle Scholar
  5. 5.
    Bejar R, Stevenson K, Abdel-Wahab O et al (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364:2496–2506PubMedCrossRefGoogle Scholar
  6. 6.
    Heuser M, Beutel G, Krauter J et al (2006) High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 108:3898–3905PubMedCrossRefGoogle Scholar
  7. 7.
    Heuser M, Argiropoulos B, Kuchenbauer F et al (2007) MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood 110:1639–1647PubMedCrossRefGoogle Scholar
  8. 8.
    Langer C, Marcucci G, Holland KB et al (2009) Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 27:3198–3204PubMedCrossRefGoogle Scholar
  9. 9.
    Baldus CD, Tanner SM, Ruppert AS et al (2003) BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 102:1613–1618PubMedCrossRefGoogle Scholar
  10. 10.
    Baldus CD, Thiede C, Soucek S et al (2006) BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol 24:790–797PubMedCrossRefGoogle Scholar
  11. 11.
    Marcucci G, Maharry K, Whitman SP et al (2007) High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 25:3337–3343PubMedCrossRefGoogle Scholar
  12. 12.
    Groschel S, Lugthart S, Schlenk RF et al (2010) High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 28:2101–2107PubMedCrossRefGoogle Scholar
  13. 13.
    Damm F, Oberacker T, Thol F et al (2011) Prognostic importance of histone methyltransferase MLL5 expression in acute myeloid leukemia. J Clin Oncol 29:682–689PubMedCrossRefGoogle Scholar
  14. 14.
    Santamaria CM, Chillon MC, Garcia-Sanz R et al (2009) Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood 114:148–152PubMedCrossRefGoogle Scholar
  15. 15.
    Heuser M, Yun H, Berg T et al (2011) Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell 20:39–52PubMedCrossRefGoogle Scholar
  16. 16.
    Heuser M, Berg T, Kuchenbauer F et al (2012) Functional role of BAALC in leukemogenesis. Leukemia 26(3):532–536PubMedCrossRefGoogle Scholar
  17. 17.
    Baldus CD, Tanner SM, Kusewitt DF et al (2003) BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol 31:1051–1056PubMedGoogle Scholar
  18. 18.
    Tsuzuki S, Taguchi O, Seto M (2011) Promotion and maintenance of leukemia by ERG. Blood 117:3858–3868PubMedCrossRefGoogle Scholar
  19. 19.
    Buonamici S, Li D, Chi Y et al (2004) EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 114:713–719PubMedGoogle Scholar
  20. 20.
    Goyama S, Yamamoto G, Shimabe M et al (2008) Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3:207–220PubMedCrossRefGoogle Scholar
  21. 21.
    Metzeler KH, Dufour A, Benthaus T et al (2009) ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol 27:5031–5038PubMedCrossRefGoogle Scholar
  22. 22.
    Valk PJ, Verhaak RG, Beijen MA et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628PubMedCrossRefGoogle Scholar
  23. 23.
    Hofmann WK, Ganser A, Seipelt G et al (1999) Treatment of patients with low-risk myelodysplastic syndromes using a combination of all-trans retinoic acid, interferon alpha, and granulocyte colony-stimulating factor. Ann Hematol 78:125–130PubMedCrossRefGoogle Scholar
  24. 24.
    Stadler M, Germing U, Kliche KO et al (2004) A prospective, randomised, phase II study of horse antithymocyte globulin vs rabbit antithymocyte globulin as immune-modulating therapy in patients with low-risk myelodysplastic syndromes. Leukemia 18:460–465PubMedCrossRefGoogle Scholar
  25. 25.
    Passweg JR, Giagounidis AA, Simcock M et al (2011) Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care—SAKK 33/99. J Clin Oncol 29:303–309PubMedCrossRefGoogle Scholar
  26. 26.
    Porter J (1989) Oral iron chelators: prospects for future development. Eur J Haematol 43:271–285PubMedCrossRefGoogle Scholar
  27. 27.
    Chou WC, Huang HH, Hou HA et al (2010) Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 115:2749–2754PubMedCrossRefGoogle Scholar
  28. 28.
    Thol F, Weissinger EM, Krauter J et al (2010) IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 95:1668–1674PubMedCrossRefGoogle Scholar
  29. 29.
    Thol F, Damm F, Wagner K et al (2010) Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood 116:614–616PubMedCrossRefGoogle Scholar
  30. 30.
    Thol F, Damm F, Lüdeking A et al (2011) Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29:2889–2896PubMedCrossRefGoogle Scholar
  31. 31.
    Damm F, Thol F, Kosmider O et al. SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia 2011; Advance Online PublicationGoogle Scholar
  32. 32.
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL et al (2003) High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101:837–845Google Scholar
  33. 33.
    Mills KI, Kohlmann A, Williams PM et al (2009) Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood 114:1063–1072PubMedCrossRefGoogle Scholar
  34. 34.
    Barrett T, Suzek TO, Troup DB et al (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res 33:D562–D566PubMedCrossRefGoogle Scholar
  35. 35.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550PubMedCrossRefGoogle Scholar
  36. 36.
    Cui JW, Li YJ, Sarkar A et al (2007) Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood 110:2631–2640PubMedCrossRefGoogle Scholar
  37. 37.
    Tiemann U, Sgodda M, Warlich E et al (2011) Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry A 79:426–435PubMedGoogle Scholar
  38. 38.
    Korn EL (1986) Censoring distributions as a measure of follow-up in survival analysis. Stat Med 5:255–260PubMedCrossRefGoogle Scholar
  39. 39.
    Cox D (1972) Regression models and life tables. J R Stat Soc B 34:187–202Google Scholar
  40. 40.
    Thol F, Winschel C, Ludeking A et al (2011) Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica 96:1870–1873PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson NK, Foster SD, Wang X et al (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7:532–544PubMedCrossRefGoogle Scholar
  42. 42.
    Kandilci A, Grosveld GC (2009) Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation. Blood 114:1596–1606PubMedCrossRefGoogle Scholar
  43. 43.
    Salek-Ardakani S, Smooha G, de Boer J et al (2009) ERG is a megakaryocytic oncogene. Cancer Res 69:4665–4673PubMedCrossRefGoogle Scholar
  44. 44.
    Thoms JA, Birger Y, Foster S et al (2011) ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 117:7079–7089PubMedCrossRefGoogle Scholar
  45. 45.
    Modlich U, Schambach A, Brugman MH et al (2008) Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 22:1519–1528PubMedCrossRefGoogle Scholar
  46. 46.
    Stein S, Ott MG, Schultze-Strasser S et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16:198–204PubMedCrossRefGoogle Scholar
  47. 47.
    Kataoka K, Sato T, Yoshimi A et al (2011) Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med 208:2403–2416PubMedCrossRefGoogle Scholar
  48. 48.
    Pradee T (2011) Over Expression of MN1 accelerates leukemia onset and confers resistance to chemotherapy by suppression of p53 and Bim. ASH Abstract 118:2501Google Scholar
  49. 49.
    Pellagatti A, Cazzola M, Giagounidis A et al (2010) Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 24:756–764PubMedCrossRefGoogle Scholar
  50. 50.
    Nikpour M, Pellagatti A, Liu A et al (2010) Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G-CSF. Br J Haematol 149:844–854PubMedCrossRefGoogle Scholar
  51. 51.
    Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365:1384–1395PubMedCrossRefGoogle Scholar
  52. 52.
    Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69PubMedCrossRefGoogle Scholar
  53. 53.
    Thol F, Kade S, Schlarmann C et al (2012) Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. doi:10.1182/blood-2011-12-399337
  54. 54.
    Damm F, Kosmider O, Gelsi-Boyer V et al (2012) Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. doi:10.1182/blood-2011-12-400994
  55. 55.
    Makishima H, Visconte V, Sakaguchi H et al (2012) Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. doi:10.1182/blood-2011-12-399774

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Felicitas Thol
    • 1
  • Haiyang Yun
    • 1
  • Ann-Kathrin Sonntag
    • 1
  • Frederik Damm
    • 1
  • Eva M. Weissinger
    • 1
  • Jürgen Krauter
    • 1
  • Katharina Wagner
    • 1
  • Michael Morgan
    • 1
  • Martin Wichmann
    • 1
  • Gudrun Göhring
    • 2
  • Gesine Bug
    • 3
  • Oliver Ottmann
    • 3
  • Wolf-Karsten Hofmann
    • 4
  • Axel Schambach
    • 5
  • Brigitte Schlegelberger
    • 2
  • Torsten Haferlach
    • 6
  • David Bowen
    • 7
  • Ken Mills
    • 8
  • Arnold Ganser
    • 1
  • Michael Heuser
    • 1
  1. 1.Department of Hematology, Hemostasis, Oncology, and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
  2. 2.Institute of Cell and Molecular PathologyHannover Medical SchoolHannoverGermany
  3. 3.Department of Internal Medicine IIIUniversity of FrankfurtFrankfurtGermany
  4. 4.Department of Hematology and OncologyUniversity Hospital MannheimMannheimGermany
  5. 5.Department of Experimental HematologyHannover Medical SchoolHannoverGermany
  6. 6.MLL, Munich Leukemia LaboratoryMunichGermany
  7. 7.St James’s Institute of OncologyLeeds Teaching HospitalsLeedsUK
  8. 8.Centre for Cancer Research and Cell BiologyQueen’s University BelfastBelfastUK

Personalised recommendations