Annals of Hematology

, Volume 91, Issue 8, pp 1235–1243 | Cite as

Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia

  • Min-hang Zhou
  • Li Gao
  • Yu Jing
  • Yuan-yuan Xu
  • Yi Ding
  • Nan Wang
  • Wei Wang
  • Mian-yang Li
  • Xiao-ping Han
  • Jun-zhong Sun
  • Li-li Wang
  • Li Yu
Original Article


ETV6 is an important hematopoietic regulatory factor and ETV6 gene rearrangement is involved in a wide variety of hematological malignancies. In this study, we sought to investigate the incidence of ETV6-associated fusion genes in B- and T-lineage acute lymphoblastic leukemia (ALL) by multiplex-nested reverse transcription-polymerase chain reaction (RT-PCR) in 176 adult ALL patients. Total RNA was extracted from bone marrow samples of ALL patients including 136 B- and 40 T-lineage ALL, and ETV6 fusion genes were detected by multiplex-nested RT-PCR. Changes of ETV6 fusion gene mRNA transcript levels were examined by real-time RT-PCR. We detected a total of 15 ETV6 gene rearrangements with a positive rate of 8.5%, involving seven ETV6-associated fusion genes in 13 B-ALL (13/136, 9.6%) and 2 T-ALL patients (2/40, 5.0%). ETV6–RUNX1 were observed in six cases (3.4%), ETV6–JAK2 in three cases (1.7%), ETV6–ABL1 in two cases (1.1%), and ETV6–ABL2, ETV6–NCOA2, ETV6–SYK, and PAX5–ETV6 each in one case (0.6%). ETV6–JAK2 was found in both B-ALL and T-ALL patients. Furthermore, real-time quantitative RT-PCR assays showed that the ETV6–RUNX1 mRNA transcript levels decreased during conventional chemotherapy or hematopoietic stem cell transplantation. This study shows that multiplex-nested RT-PCR is an effective and accurate tool to identify ETV6 rearrangements in adult ALL, which provides some clues into the diagnosis and prognosis of ALL but also molecular markers for the detection of minimal residual disease in adult ALL.


Multiplex-nested RT-PCR Acute lymphoblastic leukemia ETV6 gene rearrangements Minimal residual disease 



This work was supported by grants from the National Basic Research Program of China (2005CB522400), National Natural Science Foundation of China (90919044, 30971297,81000221, and 81170518), High and New Technology Program of PLA (2010gxjs091), and Capital Medical Development Scientific Research Fund (no. 2007-2040). We thank Jing-fen Sun and Li-ye Fu for discussion and technical assistance.

Conflicts of interests

The authors declare that they have no competing interests.


  1. 1.
    Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178PubMedCrossRefGoogle Scholar
  2. 2.
    Cortes JE, Kantarjian HM (1995) Acute lymphoblastic leukemia. A comprehensive review with emphasis on biology and therapy. Cancer 76(12):2393–2417PubMedCrossRefGoogle Scholar
  3. 3.
    Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM, Pei D, Cheng C, Pui CH, Relling MV, Janka-Schaub GE, Pieters R, Evans WE (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351(6):533–542PubMedCrossRefGoogle Scholar
  4. 4.
    Flotho C, Coustan-Smith E, Pei D, Iwamoto S, Song G, Cheng C, Pui CH, Downing JR, Campana D (2006) Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 108(3):1050–1057PubMedCrossRefGoogle Scholar
  5. 5.
    Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui CH, Downing JR, Campana D (2007) A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110(4):1271–1277PubMedCrossRefGoogle Scholar
  6. 6.
    Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N, Patel A, Downing JR (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102(8):2951–2959PubMedCrossRefGoogle Scholar
  7. 7.
    Cario G, Stanulla M, Fine BM, Teuffel O, Neuhoff NV, Schrauder A, Flohr T, Schafer BW, Bartram CR, Welte K, Schlegelberger B, Schrappe M (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105(2):821–826PubMedCrossRefGoogle Scholar
  8. 8.
    Bhojwani D, Kang H, Menezes RX, Yang W, Sather H, Moskowitz NP, Min DJ, Potter JW, Harvey R, Hunger SP, Seibel N, Raetz EA, Pieters R, Horstmann MA, Relling MV, den Boer ML, Willman CL, Carroll WL (2008) Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: a Children's Oncology Group study [corrected]. J Clin Oncol 26(27):4376–4384PubMedCrossRefGoogle Scholar
  9. 9.
    Lugthart S, Cheok MH, den Boer ML, Yang W, Holleman A, Cheng C, Pui CH, Relling MV, Janka-Schaub GE, Pieters R, Evans WE (2005) Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 7(4):375–386PubMedCrossRefGoogle Scholar
  10. 10.
    Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, Chan GC, Pui CH, Grosveld G, Downing JR (1995) TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9(12):1985–1989PubMedGoogle Scholar
  11. 11.
    Scurto P, Hsu Rocha M, Kane JR, Williams WK, Haney DM, Conn WP, Shurtleff SA, Downing JR (1998) A multiplex RT-PCR assay for the detection of chimeric transcripts encoded by the risk-stratifying translocations of pediatric acute lymphoblastic leukemia. Leukemia 12(12):1994–2005PubMedCrossRefGoogle Scholar
  12. 12.
    Liang DC, Shih LY, Yang CP, Hung IJ, Chen SH, Jaing TH, Liu HC, Chang WH (2002) Multiplex RT-PCR assay for the detection of major fusion transcripts in Taiwanese children with B-lineage acute lymphoblastic leukemia. Med Pediatr Oncol 39(1):12–17PubMedCrossRefGoogle Scholar
  13. 13.
    Poirel H, Oury C, Carron C, Duprez E, Laabi Y, Tsapis A, Romana SP, Mauchauffe M, Le Coniat M, Berger R, Ghysdael J, Bernard OA (1997) The TEL gene products: nuclear phosphoproteins with DNA binding properties. Oncogene 14(3):349–357PubMedCrossRefGoogle Scholar
  14. 14.
    Rompaey LV, Potter M, Adams C, Grosveld G (2000) Tel induces a G1 arrest and suppresses Ras-induced transformation. Oncogene 19(46):5244–5250PubMedCrossRefGoogle Scholar
  15. 15.
    Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2):307–316PubMedCrossRefGoogle Scholar
  16. 16.
    Bohlander SK (2005) ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 15(3):162–174PubMedCrossRefGoogle Scholar
  17. 17.
    Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA (1995) The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85(12):3662–3670PubMedGoogle Scholar
  18. 18.
    Liang DC, Chou TB, Chen JS, Shurtleff SA, Rubnitz JE, Downing JR, Pui CH, Shih LY (1996) High incidence of TEL/AML1 fusion resulting from a cryptic t(12;21) in childhood B-lineage acute lymphoblastic leukemia in Taiwan. Leukemia 10(6):991–993PubMedGoogle Scholar
  19. 19.
    Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P, Macintyre EA, Berger R, Bernard OA (1995) High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 86(11):4263–4269PubMedGoogle Scholar
  20. 20.
    Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J (1999) Significantly lower relapse rate for TEL/AML1-positive ALL. Leukemia 13(10):1633PubMedCrossRefGoogle Scholar
  21. 21.
    Smith CA, Fan G (2008) The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms. Hum Pathol 39(6):795–810PubMedCrossRefGoogle Scholar
  22. 22.
    Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA (1997) A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278(5341):1309–1312PubMedCrossRefGoogle Scholar
  23. 23.
    Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H, Marynen P (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90(7):2535–2540PubMedGoogle Scholar
  24. 24.
    La Starza R, Trubia M, Testoni N, Ottaviani E, Belloni E, Crescenzi B, Martelli M, Flandrin G, Pelicci PG, Mecucci C (2002) Clonal eosinophils are a morphologic hallmark of ETV6/ABL1 positive acute myeloid leukemia. Haematologica 87(8):789–794PubMedGoogle Scholar
  25. 25.
    Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, Zemanova Z, Brezinova J, Votava F, Marschalek R, Stary J, Trka J (2010) Acute leukemias with ETV6/ABL1 (TEL/ABL) fusion: poor prognosis and prenatal origin. Genes Chromosomes Cancer 49(10):873–884PubMedCrossRefGoogle Scholar
  26. 26.
    Nand R, Bryke C, Kroft SH, Divgi A, Bredeson C, Atallah E (2009) Myeloproliferative disorder with eosinophilia and ETV6–ABL gene rearrangement: efficacy of second-generation tyrosine kinase inhibitors. Leuk Res 33(8):1144–1146PubMedCrossRefGoogle Scholar
  27. 27.
    Palmi C, Fazio G, Cassetti A, Aloisi A, Villa A, Biondi A, Cazzaniga G (2006) TEL/ARG induces cytoskeletal abnormalities in 293T cells. Cancer Lett 241(1):79–86PubMedCrossRefGoogle Scholar
  28. 28.
    Cazzaniga G, Tosi S, Aloisi A, Giudici G, Daniotti M, Pioltelli P, Kearney L, Biondi A (1999) The tyrosine kinase abl-related gene ARG is fused to ETV6 in an AML-M4Eo patient with a t(1;12)(q25;p13): molecular cloning of both reciprocal transcripts. Blood 94(12):4370–4373PubMedGoogle Scholar
  29. 29.
    Gao N, Li ZH, Ding BT, Chen Y, Wang YS, Qiao Y, Guo NJ (2008) Expression of ETV6 rearrangement in a subject with acute myeloid leukemia-M4Eo. Chin Med J (Engl) 121(17):1744–1746Google Scholar
  30. 30.
    Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15(14):3667–3675PubMedGoogle Scholar
  31. 31.
    Strehl S, Nebral K, Konig M, Harbott J, Strobl H, Ratei R, Struski S, Bielorai B, Lessard M, Zimmermann M, Haas OA, Izraeli S (2008) ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 14(4):977–983PubMedCrossRefGoogle Scholar
  32. 32.
    Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E, Kearney L, Biondi A (2001) The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res 61(12):4666–4670PubMedGoogle Scholar
  33. 33.
    Coyaud E, Struski S, Prade N, Familiades J, Eichner R, Quelen C, Bousquet M, Mugneret F, Talmant P, Pages MP, Lefebvre C, Penther D, Lippert E, Nadal N, Taviaux S, Poppe B, Luquet I, Baranger L, Eclache V, Radford I, Barin C, Mozziconacci MJ, Lafage-Pochitaloff M, Antoine-Poirel H, Charrin C, Perot C, Terre C, Brousset P, Dastugue N, Broccardo C (2010) Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood 115(15):3089–3097PubMedCrossRefGoogle Scholar
  34. 34.
    von Bergh AR, van Drunen E, van Wering ER, van Zutven LJ, Hainmann I, Lonnerholm G, Meijerink JP, Pieters R, Beverloo HB (2006) High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer 45(8):731–739CrossRefGoogle Scholar
  35. 35.
    Taketani T, Taki T, Sako M, Ishii T, Yamaguchi S, Hayashi Y (2008) MNX1–ETV6 fusion gene in an acute megakaryoblastic leukemia and expression of the MNX1 gene in leukemia and normal B cell lines. Cancer Genet Cytogenet 186(2):115–119PubMedCrossRefGoogle Scholar
  36. 36.
    Kuno Y (2001) Constitutive kinase activation of the TEL–Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 97(4):1050–1055PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou MH, Jiang MM, Gao L, Xu YY, Ding Y, Wang LL, Jing Y, Wang QS, Yu L (2011) Application of reverse transcription-multiplex nested PCR to detect PDGFRB gene rearrangement in myeloproliferative disorders. Zhongguo Shi Yan Xue Ye Xue Za Zhi 19(6):1443–1446PubMedGoogle Scholar
  38. 38.
    Felix CA, Lange BJ, Chessells JM (2000) Pediatric acute lymphoblastic leukemia: challenges and controversies in 2000. Hematology Am Soc Hematol Educ Program 285–302Google Scholar
  39. 39.
    Li ZG, Wu MY, Zhao W, Li B, Yang J, Zhu P, Hu YM (2003) Detection of 29 types of fusion gene in leukemia by multiplex RT-PCR. Zhonghua Xue Ye Xue Za Zhi 24(5):256–258PubMedGoogle Scholar
  40. 40.
    Olesen LH, Clausen N, Dimitrijevic A, Kerndrup G, Kjeldsen E, Hokland P (2004) Prospective application of a multiplex reverse transcription-polymerase chain reaction assay for the detection of balanced translocations in leukaemia: a single-laboratory study of 390 paediatric and adult patients. Br J Haematol 127(1):59–66PubMedCrossRefGoogle Scholar
  41. 41.
    Magalhaes IQ, Pombo-de-Oliveira MS, Bennett CA, Cordoba JC, Dobbin J, Ford AM, Greaves MF (2000) TEL–AML1 fusion gene frequency in paediatric acute lymphoblastic leukaemia in Brazil. Br J Haematol 111(1):204–207PubMedCrossRefGoogle Scholar
  42. 42.
    Sawinska M, Ladon D (2004) Mechanism, detection and clinical significance of the reciprocal translocation t(12;21)(p12;q22) in the children suffering from acute lymphoblastic leukaemia. Leuk Res 28(1):35–42PubMedCrossRefGoogle Scholar
  43. 43.
    Rubnitz JE, Wichlan D, Devidas M, Shuster J, Linda SB, Kurtzberg J, Bell B, Hunger SP, Chauvenet A, Pui CH, Camitta B, Pullen J (2008) Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. J Clin Oncol 26(13):2186–2191PubMedCrossRefGoogle Scholar
  44. 44.
    Tirado CA, Chen W, Huang LJ, Laborde C, Hiemenz MC, Valdez F, Ho K, Winick N, Lou Z, Koduru P (2010) Novel JAK2 rearrangement resulting from a t(9;22)(p24;q11.2) in B-acute lymphoblastic leukemia. Leuk Res 34(12):1674–1676PubMedCrossRefGoogle Scholar
  45. 45.
    Thai M, Ting PY, McLaughlin J, Cheng D, Muschen M, Witte ON, Colicelli J (2011) ABL fusion oncogene transformation and inhibitor sensitivity are mediated by the cellular regulator RIN1. Leukemia 25(2):290–300PubMedCrossRefGoogle Scholar
  46. 46.
    Barbouti A, Ahlgren T, Johansson B, Hoglund M, Lassen C, Turesson I, Mitelman F, Fioretos T (2003) Clinical and genetic studies of ETV6/ABL1-positive chronic myeloid leukaemia in blast crisis treated with imatinib mesylate. Br J Haematol 122(1):85–93PubMedCrossRefGoogle Scholar
  47. 47.
    Kanie T, Abe A, Matsuda T, Kuno Y, Towatari M, Yamamoto T, Saito H, Emi N, Naoe T (2004) TELSyk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways. Leukemia 18(3):548–555PubMedCrossRefGoogle Scholar
  48. 48.
    Okuda K, Sato Y, Sonoda Y, Griffin JD (2004) The TEL/ARG leukemia oncogene promotes viability and hyperresponsiveness to hematopoietic growth factors. Int J Hematol 79(2):138–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Min-hang Zhou
    • 1
  • Li Gao
    • 1
  • Yu Jing
    • 1
  • Yuan-yuan Xu
    • 1
  • Yi Ding
    • 1
  • Nan Wang
    • 1
  • Wei Wang
    • 1
  • Mian-yang Li
    • 2
  • Xiao-ping Han
    • 1
  • Jun-zhong Sun
    • 3
  • Li-li Wang
    • 1
  • Li Yu
    • 1
  1. 1.Department of HematologyChinese PLA General HospitalBeijingChina
  2. 2.Department of Clinical LaboratoryChinese PLA General HospitalBeijingChina
  3. 3.Department of OncologyChinese PLA General HospitalBeijingChina

Personalised recommendations