Annals of Hematology

, Volume 91, Issue 5, pp 715–721 | Cite as

Identification of patients with indolent B cell lymphoma sensitive to rituximab monotherapy

  • Divi Cornec
  • Adrian Tempescul
  • Solène Querellou
  • Pascal Hutin
  • Jacques-Olivier Pers
  • Christophe Jamin
  • Boutahar Bendaoud
  • Christian Berthou
  • Yves Renaudineau
  • Pierre Youinou
Original Article


The potential predictive value of tumor bulk, genetic, and immunological variants in patients with low-grade non-Hodgkin's lymphoma to respond to treatment with rituximab (RTX) monotherapy was evaluated. Thus, the value of assessing the effect of 18-fluoro-desoxy-d-glucose (FDG) uptake on PET scan, polymorphisms in Fc gamma receptor (FcγR) IIIa-158, FcγRIIa-131, and C1qA-276 genes in predicting the response to treatment were evaluated in 50 low-grade non-Hodgkin's lymphoma patients. The influence of RTX pharmacokinetics, plasma levels of the B cell-activating factor (BAFF), and human antichimeric antibodies was also investigated. The therapeutic response was evaluated 10 weeks after treatment using revised Cheson's criteria. Lower maximal standardized uptake values (SUVmax) at baseline were predictive of complete response. FcγRIIIa-158 polymorphism was also associated with complete response to RTX confirming previous findings, whereas polymorphisms in the FcγRIIa-131 and C1qA-276 genes were not. Lower blood levels of RTX were observed in males, but the effectiveness of RTX in males and females was the same. BAFF was not detectable in plasma before or after treatment, and no patients developed human antichimeric antibodies. Low-grade non-Hodgkin's lymphoma patients with a low SUVmax at baseline and an FcγRIIIa-158 V/V genotype generally had a complete response to RTX.


Rituximab Low grade Non-Hodgkin's lymphoma SUVmax Fc gamma receptor C1qA 



Many thanks go to Geneviève Michel and Simone Forest for their assistance with the typing of this manuscript. The expert editorial help of Prof. Rizgar A Mageed (London, UK) is also appreciated.

Conflicts of interest



  1. 1.
    Maloney DG, Grillo-López AJ, White CA et al (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90:2188–2195PubMedGoogle Scholar
  2. 2.
    Salles G, Seymour JF, Offner F et al (2011) Rituximab maintenance for 2 years in patients with high tumor burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet 377:42–51PubMedCrossRefGoogle Scholar
  3. 3.
    Renaudineau Y, Devauchelle-Pensec V, Hanrotel C, Pers JO, Saraux A, Youinou P (2009) Monoclonal anti-CD20 antibodies: mechanisms of action and monitoring of biological effects. Joint Bone Spine 76:458–463PubMedCrossRefGoogle Scholar
  4. 4.
    Boye J, Elter T, Engert A (2003) An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann Oncol 14:520–535PubMedCrossRefGoogle Scholar
  5. 5.
    Dall’Ozzo S, Tartas S, Paintaud G et al (2004) Rituximab-dependent cytotoxicity by NK cells: influence of FcγRIIIa polymorphism on the concentration–effect relationship. Cancer Res 64:4664–4669PubMedCrossRefGoogle Scholar
  6. 6.
    Van Meerten T, van Rijn RS, Hol S, Hagenbeek A, Ebeling SB (2006) Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cell cytotoxicity. Clin Cancer Res 12:4027–4035PubMedCrossRefGoogle Scholar
  7. 7.
    Shan D, Ledbetter JA, Press OW (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant B cells. Cancer Immunol Immunother 48:673–683PubMedCrossRefGoogle Scholar
  8. 8.
    Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in Fc-gamma receptor IIIa gene. Blood 99:754–758PubMedCrossRefGoogle Scholar
  9. 9.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947PubMedCrossRefGoogle Scholar
  10. 10.
    Racila E, Link BK, Weng W et al (2008) A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res 14:6697–6703PubMedCrossRefGoogle Scholar
  11. 11.
    Berinstein NL, Grillo-López AJ, White CA et al (1998) Association of serum rituximab concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol 9:995–1001PubMedCrossRefGoogle Scholar
  12. 12.
    Davis TA, Grillo-López AJ, White CA et al (2000) Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma: safety and efficacy of re-treatment. J Clin Oncol 18:3135–3143PubMedGoogle Scholar
  13. 13.
    Novak AJ, Grote DM, Stenson M et al (2004) Expression of BLyS and its receptors in B-cell non-Hodgkin's lymphoma: correlation with disease activity and patient outcome. Blood 104:2247–2253PubMedCrossRefGoogle Scholar
  14. 14.
    Mackay F, Browning JL (2002) BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2:465–475PubMedCrossRefGoogle Scholar
  15. 15.
    Pers J, Devauchelle V, Daridon C et al (2007) BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjögren's syndrome. Arthritis Rheum 56:1464–1477PubMedCrossRefGoogle Scholar
  16. 16.
    Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M (1971) Report of the Committee on Hodgkin's Staging Classification. Cancer Res 31:1860–1861PubMedGoogle Scholar
  17. 17.
    Solal-Céligny P, Roy P, Colombat P et al (2004) Follicular lymphoma international prognostic index. Blood 104:1258–1265PubMedCrossRefGoogle Scholar
  18. 18.
    Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586PubMedCrossRefGoogle Scholar
  19. 19.
    Cragg MS, Bayne MB, Tutt AL et al (2004) A new anti-Id antibody capable of binding rituximab on the surface of lymphoma cells. Blood 104:2540–2542PubMedCrossRefGoogle Scholar
  20. 20.
    Saito Y, Miyagawa Y, Onda K et al (2008) BAFF inhibits CD20-mediated and BCR-mediated apoptosis in human B cells. Immunology 125:570–590PubMedCrossRefGoogle Scholar
  21. 21.
    Le Pottier L, Bendaoud B, Renaudineau Y et al (2009) New ELISA for BAFF. Clin Chem 55:1843–1851PubMedCrossRefGoogle Scholar
  22. 22.
    Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother Emphasis Tumor Immunol 15:42–52PubMedCrossRefGoogle Scholar
  23. 23.
    Teeling JL, French RR, Cragg MS et al (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin's lymphoma. Blood 104:1793–1800PubMedCrossRefGoogle Scholar
  24. 24.
    Zijlstra JM, Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen II, Huijgens PC (2006) 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 91:522–529PubMedGoogle Scholar
  25. 25.
    Le Dortz L, De Guibert S, Bayat S et al (2010) Diagnostic and prognostic impact of 18F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging 37:2307–2314PubMedCrossRefGoogle Scholar
  26. 26.
    Cazaentre T, Morschhauser F, Bermandel M et al (2010) Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:494–504PubMedCrossRefGoogle Scholar
  27. 27.
    Hatjiharissi E, Xu L, Santos DD et al (2007) Increased NK cell expression of CD16, augmented binding and ADCC activity of rituximab among individuals expressing the FcγRIIIa-158V/V and V/F polymorphism. Blood 110:2561–2564PubMedCrossRefGoogle Scholar
  28. 28.
    Wu J, Edberg JC, Redecha PB et al (1997) A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100:1059–1070PubMedCrossRefGoogle Scholar
  29. 29.
    Anolik JH, Campbell D, Felgar RE et al (2003) The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48:455–459PubMedCrossRefGoogle Scholar
  30. 30.
    Mitroviç Z, Aurer I, Radman I, Ajdukoviç R, Sertiç J, Labar B (2007) FcγRIIIa and FcγRIIa polymorphisms are not associated with response to rituximab and CHOP in patients with diffuse large B-cell lymphoma. Haematologica 92:998–999PubMedCrossRefGoogle Scholar
  31. 31.
    Carlotti E, Palumbo GA, Oldani E et al (2007) FcγRIIIa and FcγRIIa polymorphisms do not predict clinical outcome of follicular NHL patients treated with sequential CHOP and rituximab. Haematologica 92:1127–1130PubMedCrossRefGoogle Scholar
  32. 32.
    Weng WK, Levy R (2009) Genetic polymorphism of the inhibitory IgG Fc receptor FcγRIIb is not associated with clinical outcome in patients with follicular lymphoma treated with rituximab. Leuk Lymphoma 50:723–727PubMedCrossRefGoogle Scholar
  33. 33.
    Lejeune J, Thibault G, Ternant D, Cartron G, Watier H, Ohresser M (2008) Evidence for linkage disequilibrium between FcγRIIIa-V158F and FcγRIIa-H131R polymorphisms in White patients, and for an FcγRIIIa-restricted influence on the response to therapeutic antibodies. J Clin Oncol 26:5489–5491PubMedCrossRefGoogle Scholar
  34. 34.
    Di Gaetano N, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMedGoogle Scholar
  35. 35.
    Nielsen CH, Fischer EM, Leslie RG (2000) The role of complement in the acquired immune response. Immunology 100:4–12PubMedCrossRefGoogle Scholar
  36. 36.
    Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669PubMedCrossRefGoogle Scholar
  37. 37.
    Tobinai K, Igarashi T, Itoh K et al (2004) Japanese multicenter phase II and pharmacokinetic study of rituximab in relapsed or refractory patients with aggressive B-cell lymphoma. Ann Oncol 15:821–830PubMedCrossRefGoogle Scholar
  38. 38.
    Novak AJ, Slager SL, Fredericksen ZS et al (2009) Genetic variation in B-cell-activating factor is associated with an increased risk of developing B-cell non-Hodgkin lymphoma. Cancer Res 69:4217–4224PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Divi Cornec
    • 1
    • 2
  • Adrian Tempescul
    • 3
  • Solène Querellou
    • 4
  • Pascal Hutin
    • 1
  • Jacques-Olivier Pers
    • 1
    • 2
  • Christophe Jamin
    • 1
    • 2
  • Boutahar Bendaoud
    • 1
    • 2
  • Christian Berthou
    • 1
    • 3
  • Yves Renaudineau
    • 1
    • 2
  • Pierre Youinou
    • 1
    • 2
  1. 1.EA2216 “Immunology and Pathology” and IFR146 “ScInBios”Université Européenne de BretagneBrestFrance
  2. 2.Laboratory of ImmunologyBrest University Medical School HospitalBrestFrance
  3. 3.Department of Clinical OncologyBrest University Medical School HospitalBrestFrance
  4. 4.Unit of Nuclear MedicineBrest University Medical School HospitalBrestFrance

Personalised recommendations