Annals of Hematology

, Volume 91, Issue 4, pp 533–541 | Cite as

TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms

  • Luz Martínez-Avilés
  • Carlos Besses
  • Alberto Álvarez-Larrán
  • Erica Torres
  • Sergi Serrano
  • Beatriz Bellosillo
Original Article

Abstract

Mutations in the TET2 and ASXL1 genes have been described in approximately 14% and 8% of patients, respectively, with classic myeloproliferative neoplasms (MPN), but their role as possible new diagnostic molecular markers is still inconclusive. In addition, other genes such as IDH1, IDH2, and c-CBL have also been reported in several myeloid neoplasms. We have studied the mutational status of TET2 (complete coding region), ASXL1 (exon12), IDH1 (R132), IDH2 (R140 and R172), and c-CBL (exons 8 and 9) in 62 MPN patients (52 essential thrombocythemia (ET), five polycythemia vera (PV), and five primary myelofibrosis (PMF)) negative for both JAK2 (V617F and exon 12) and MPL (exon 10) mutations. Pathogenic alterations in the TET2 gene were detected in three out 52 ET cases (4.8%). ASXL1 gene pathogenic mutations were also detected in three cases (two ET and one PMF). One ET patient harbored, simultaneously, one TET2 and one ASXL1 mutations. Mutations in the TET2 and ASXL1 genes showed no association with the JAK2 46/1 haplotype. Analysis of a JAK2V617F-positive cohort of 50 ET patients showed no mutations in either the TET2 or ASXL1 genes. Regarding IDH1, IDH2, and c-CBL genes, no mutations were found in any patient. In conclusion, TET2 and ASXL1 pathogenic mutations are found in 8% of MPN lacking JAK2 and MPL mutations, whereas IDH1, IDH2, and c-CBL mutations are not detected in this subset of patients.

Keywords

TET2 ASXL1 IDH1 IDH2 c-CBL Mutations 

Notes

Acknowledgments

This work was supported by grants from the Spanish Health Ministry “Fondo de Investigación Sanitaria” EC 07/90791, PI10/01807, Instituto de Salud Carlos III FEDER (RD09/0076/00036), and the “Xarxa de Bancs de Tumors sponsored by Pla Director d’Oncologia de Catalunya (XBTC)”. Luz Martínez-Avilés is recipient of a fellowship from the “Comissionat per a Universitats i Recerca del department d’ Innovació, Universitats i Empresa de la Generalitat de Catalunya i del Fons Social Europeu.”

Supplementary material

277_2011_1330_MOESM1_ESM.doc (33 kb)
Supplementary Table 1 (DOC 33 kb)

References

  1. 1.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, PatelJ WM et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147PubMedCrossRefGoogle Scholar
  2. 2.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301PubMedCrossRefGoogle Scholar
  3. 3.
    Couronné L, Lippert E, Andrieux J, Kosmider O, Radford-Weiss I, Penther D et al (2009) Analyses of TET2 mutations in post-myeloproliferative neoplasm acute myeloid leukemias. Leukemia 24:201–203PubMedCrossRefGoogle Scholar
  4. 4.
    Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842PubMedCrossRefGoogle Scholar
  5. 5.
    Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23:905–911PubMedCrossRefGoogle Scholar
  6. 6.
    Tefferi A, Levine RL, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al (2009) Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 23:900–904PubMedCrossRefGoogle Scholar
  7. 7.
    Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM et al (2009) Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23:1343–1345PubMedCrossRefGoogle Scholar
  8. 8.
    Abdel-Wahab (2011) Genetics of the myeloproliferative neoplasms. Curr Opin Hematol 18:117–123PubMedCrossRefGoogle Scholar
  9. 9.
    Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J, Rey J et al (2009) Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23:2183–2186PubMedCrossRefGoogle Scholar
  10. 10.
    Gelsi-Boyer V, Trouplin V, Adélaïde J, Bonansea J, Cervera N, Carbuccia N et al (2009) Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematology 145:788–800CrossRefGoogle Scholar
  11. 11.
    Abdel-Wahab O, Pardanani A, Patel J, Lasho T, Heguy A, Levine RL et al (2010) Concomitant analysis of EZH2 and ASXL1 Mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Blood (ASH Annual Meeting Abstracts) 116:1267, Abstr. 3070Google Scholar
  12. 12.
    Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay KO et al (2010) Distinct clinical and biological characteristics in adult acute myeloid leukemia bearing isocitrate dehydrogenase 1 (IDH1) mutation. Blood 115:2749–2754PubMedCrossRefGoogle Scholar
  13. 13.
    Mardis ET, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al (2009) Recurring mutations found by sequencing and acute myeloid leukemia genome. N Engl J Med 361:1058–1066PubMedCrossRefGoogle Scholar
  14. 14.
    Green A, Beer P (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370PubMedCrossRefGoogle Scholar
  15. 15.
    Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A (2010) IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 24:1146–1151PubMedCrossRefGoogle Scholar
  16. 16.
    Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J, Caramazza D et al (2010) IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 24:1302–1309PubMedCrossRefGoogle Scholar
  17. 17.
    Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234PubMedCrossRefGoogle Scholar
  18. 18.
    Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M et al (2007) Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110:1004–1012PubMedCrossRefGoogle Scholar
  19. 19.
    Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H et al (2008) 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68:10349–10357PubMedCrossRefGoogle Scholar
  20. 20.
    Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113:6182–6192PubMedCrossRefGoogle Scholar
  21. 21.
    Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S et al (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114:1859–1863PubMedCrossRefGoogle Scholar
  22. 22.
    Reindl C, Quentmeier H, Petropoulos K, Greif PA, Benthaus T, Argiropoulos B et al (2009) CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 215:2238–2247CrossRefGoogle Scholar
  23. 23.
    Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449PubMedCrossRefGoogle Scholar
  24. 24.
    Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41:455–459PubMedCrossRefGoogle Scholar
  25. 25.
    Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabingir I et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454PubMedCrossRefGoogle Scholar
  26. 26.
    Olcaydu D, Skoda RC, Looser R, Li S, Cazzola M, Pietra D et al (2009) The ´GGCC´haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 23:1924–1926PubMedCrossRefGoogle Scholar
  27. 27.
    Jones AV, Campbell PJ, Beer PA, Schnittger S, Vannucchi AM, Zoi K et al (2010) The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115:4517–4523PubMedCrossRefGoogle Scholar
  28. 28.
    Beer PA, Delhommeau F, LeCouédic JP, Dawson MA, Chen E, Bareford D et al (2009) Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115:2891–2900PubMedCrossRefGoogle Scholar
  29. 29.
    Abdel-Wahab O, Manshouri T, Patel J (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasm to leukemias. Canc Res 70:447–452CrossRefGoogle Scholar
  30. 30.
    Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, Skoda RC (2010) Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 115:2003–2007PubMedCrossRefGoogle Scholar
  31. 31.
    Kosmider O, Delabesse, Mansat-De Mas V, Cornillet-Lefebvre P, Blanchet O, Delmer A et al (2011) TET2 mutations in secondary acute myeloid leukemias: a French retrospective study. Haematologica 96:1059–1063PubMedCrossRefGoogle Scholar
  32. 32.
    Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al (2010) Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 28:3858–3865PubMedCrossRefGoogle Scholar
  33. 33.
    Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gäken J, Lea NC, Przychodzen B et al (2010) Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 116:3923–3932PubMedCrossRefGoogle Scholar
  34. 34.
    Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G et al (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29:1971–1979PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Luz Martínez-Avilés
    • 1
    • 3
    • 5
  • Carlos Besses
    • 2
    • 5
  • Alberto Álvarez-Larrán
    • 2
    • 5
  • Erica Torres
    • 1
  • Sergi Serrano
    • 1
    • 3
  • Beatriz Bellosillo
    • 1
    • 4
    • 5
  1. 1.Department of PathologyHospital del MarBarcelonaSpain
  2. 2.Department of Clinical HematologyHospital del MarBarcelonaSpain
  3. 3.Universitat Autònoma de Barcelona, IMIM-Hospital del MarBarcelonaSpain
  4. 4.Universitat Pompeu Fabra, IMIM-Hospital del MarBarcelonaSpain
  5. 5.Grup de Recerca Aplicada en Neoplasies Hematològiques, IMIM-Hospital del MarBarcelonaSpain

Personalised recommendations