Annals of Hematology

, Volume 91, Issue 3, pp 427–437

Allogeneic bone marrow transplantation compared to peripheral blood stem cell transplantation for the treatment of hematologic malignancies: a meta-analysis based on time-to-event data from randomized controlled trials

  • Ying-Jun Chang
  • Cui-Lian Weng
  • Li-Xia Sun
  • Yun-Tao Zhao
Original Article

Abstract

Controversy remains regarding the transplant outcomes of human leukocyte antigen-identical related bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) for the treatment of patients with hematological malignancies. To provide an estimate of the effect of BMT and PBSCT on clinical outcomes in patients with hematological malignancies, we conducted a meta-analysis based on time-to-event data from 17 randomized controlled trials. PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL), from 1972 through July 2010, and conference proceedings through July 2009 and reference lists, without any language restriction, of randomized trials that compared the transplant outcomes after BMT and PBSCT in patients with hematological malignancies were searched for details. Two independent reviewers extracted the data. The outcomes examined were engraftment, graft-versus-host disease (GVHD), relapse, transplant-related mortality (TRM), leukemia-free-survival (LFS), and overall survival (OS). Compared to PBSCT, BMT had lower neutrophil (HR, 2.08; 95% CI, 1.80 to 2.42; p < 0.00001) and platelet (HR, 2.77; 95% CI, 1.78 to 4.30; p < 0.00001) engraftment. BMT was associated with a significant decrease in the development of grades II–IV (HR, 0.75; 95% CI, 0.63 to 0.90; p = 0.002) and III–IV (HR, 0.63; 95% CI, 0.47 to 0.84; p = 0.001) acute GVHD as well as overall (HR, 0.70; 95% CI, 0.59 to 0.83; p < 0.0001) and extensive (HR, 0.60; 95% CI, 0.39 to 0.91; p = 0.002) chronic GVHD. BMT was associated with a higher incidence of relapse (HR, 1.91; 95% CI, 1.34 to 2.74; p = 0.0004). Comparable TRM (1.08; 95% CI, 0.56 to 2.10; p = 0.81), LFS (HR, 1.04; 95% CI, 0.83 to 1.30; p = 0.73), and OS (HR, 1.06; 95% CI, 0.81 to 1.39; p = 0.65) were demonstrated for both treatments. An inverse linear relationship was observed between the acute GVHD difference (PBSCT minus BMT) and the outcome of OS (p = 0.016). Our meta-analysis suggest that BMT leads to slower hematological recovery, increasing rates of relapse, and a lower risk of GVHD, but no significant difference in LFS and OS. A lower incidence of acute GVHD is associated with a superior OS.

Keywords

Bone marrow transplantation Peripheral blood stem cell transplantation Hematologic malignancies Meta-analysis 

Supplementary material

277_2011_1299_MOESM1_ESM.doc (24 kb)
ESM 1Appendix: search strategies (DOC 24 kb)

References

  1. 1.
    Andrews RG, Briddell RA, Knitter GH et al (1995) Rapid engraftment by peripheral blood progenitor cells mobilized by recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in nonhuman primates. Blood 85:15–20PubMedGoogle Scholar
  2. 2.
    Bensinger WI, Weaver CH, Appelbaum FR et al (1995) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85:1655–1658PubMedGoogle Scholar
  3. 3.
    Mahmoud H, Fahmy O, Kamel A et al (1999) Peripheral blood vs bone marrow as a source for allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 24:355–358PubMedCrossRefGoogle Scholar
  4. 4.
    Schmitz N, Beksac M, Bacigalupo A et al (2005) Filgrastim-mobilized peripheral blood progenitor cells versus bone marrow transplantation for treating leukemia: 3-year results from the EBMT randomized trial. Haematologica 90:643–648PubMedGoogle Scholar
  5. 5.
    Gallardo D, de la Camara R, Nieto JB et al (2009) Is mobilized peripheral blood comparable with bone marrow as a source of hematopoietic stem cells for allogeneic transplantation from HLA-identical sibling donors? A case–control study. Haematologica 94:1282–1288PubMedCrossRefGoogle Scholar
  6. 6.
    Powles R (2010) 50 years of allogeneic bone-marrow transplantation. Lancet Oncol 11:305–306PubMedCrossRefGoogle Scholar
  7. 7.
    Schmitz N, Bacigalupo A, Hasenclever D et al (1998) Allogeneic bone marrow transplantation vs filgrastim-mobilised peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of a randomised multicentre trial of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 21:995–1003PubMedCrossRefGoogle Scholar
  8. 8.
    Vigorito AC, Azevedo WM, Marques JF et al (1998) A randomised, prospective comparison of allogeneic bone marrow and peripheral blood progenitor cell transplantation in the treatment of haematological malignancies. Bone Marrow Transplant 22:1145–1151PubMedCrossRefGoogle Scholar
  9. 9.
    Blaise D, Kuentz M, Fortanier C et al (2000) Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 18:537–546PubMedGoogle Scholar
  10. 10.
    Heldal D, Tjonnfjord G, Brinch L et al (2000) A randomised study of allogeneic transplantation with stem cells from blood or bone marrow. Bone Marrow Transplant 25:1129–1136PubMedCrossRefGoogle Scholar
  11. 11.
    Powles R, Mehta J, Kulkarni S et al (2000) Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomised trial. Lancet 355:1231–1237PubMedCrossRefGoogle Scholar
  12. 12.
    Bensinger WI, Martin PJ, Storer B et al (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 344:175–181PubMedCrossRefGoogle Scholar
  13. 13.
    Cutler C, Giri S, Jeyapalan S et al (2001) Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 19:3685–3691PubMedGoogle Scholar
  14. 14.
    Morton J, Hutchins C, Durrant S (2001) Granulocyte-colony-stimulating factor (G-CSF)-primed allogeneic bone marrow: significantly less graft-versus-host disease and comparable engraftment to G-CSF-mobilized peripheral blood stem cells. Blood 98:3186–3191PubMedCrossRefGoogle Scholar
  15. 15.
    Vigorito AC, Marques Junior JF, Aranha FJ et al (2001) A randomized, prospective comparison of allogeneic bone marrow and peripheral blood progenitor cell transplantation in the treatment of hematologic malignancies: an update. Haematologica 86:665–666PubMedGoogle Scholar
  16. 16.
    Couban S, Simpson DR, Barnett MJ et al (2002) A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 100:1525–1531PubMedCrossRefGoogle Scholar
  17. 17.
    Flowers ME, Parker PM, Johnston LJ et al (2002) Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 100:415–419PubMedCrossRefGoogle Scholar
  18. 18.
    Mohty M, Kuentz M, Michallet M et al (2002) Chronic graft-versus-host disease after allogeneic blood stem cell transplantation: long-term results of a randomized study. Blood 100:3128–3134PubMedCrossRefGoogle Scholar
  19. 19.
    Schmitz N, Beksac M, Hasenclever D et al (2002) Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard-risk leukemia. Blood 100:761–767PubMedCrossRefGoogle Scholar
  20. 20.
    Cornelissen JJ, van der Holt B, Petersen EJ et al (2003) A randomized multicenter comparison of CD34(+)-selected progenitor cells from blood vs from bone marrow in recipients of HLA-identical allogeneic transplants for hematological malignancies. Exp Hematol 31:855–864PubMedCrossRefGoogle Scholar
  21. 21.
    Oehler VG, Radich JP, Storer B et al (2005) Randomized trial of allogeneic related bone marrow transplantation versus peripheral blood stem cell transplantation for chronic myeloid leukemia. Biol Blood Marrow Transplant 11:85–92PubMedCrossRefGoogle Scholar
  22. 22.
    Friedrichs B, Tichelli A, Bacigalupo A et al (2010) Long-term outcome and late effects in patients transplanted with mobilised blood or bone marrow: a randomised trial. Lancet Oncol 11:331–338PubMedCrossRefGoogle Scholar
  23. 23.
    Ringden O, Labopin M, Bacigalupo A et al (2002) Transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical siblings in adult patients with acute myeloid leukemia and acute lymphoblastic leukemia. J Clin Oncol 20:4655–4664PubMedCrossRefGoogle Scholar
  24. 24.
    Nagafuji K, Matsuo K, Teshima T et al (2010) Peripheral blood stem cell versus bone marrow transplantation from HLA-identical sibling donors in patients with leukemia: a propensity score-based comparison from the Japan Society for Hematopoietic Stem Cell Transplantation registry. Int J Hematol 91:855–864PubMedCrossRefGoogle Scholar
  25. 25.
    Eapen M, Rocha V, Sanz G et al (2010) Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol 11:653–660PubMedCrossRefGoogle Scholar
  26. 26.
    Schmitz N, Eapen M, Horowitz MM et al (2006) Long-term outcome of patients given transplants of mobilized blood or bone marrow: a report from the International Bone Marrow Transplant registry and the European Group for Blood and Marrow Transplantation. Blood 108:4288–4290PubMedCrossRefGoogle Scholar
  27. 27.
    Horan JT, Liesveld JL, Fernandez ID et al (2003) Survival after HLA-identical allogeneic peripheral blood stem cell and bone marrow transplantation for hematologic malignancies: meta-analysis of randomized controlled trials. Bone Marrow Transplant 32:293–298PubMedCrossRefGoogle Scholar
  28. 28.
    Stem Cell Trialists' Collaborative Group (2005) Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 23:5074–5087CrossRefGoogle Scholar
  29. 29.
    Pidala J, Anasetti C, Kharfan-Dabaja MA et al (2009) Decision analysis of peripheral blood versus bone marrow hematopoietic stem cells for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 15:1415–1421PubMedCrossRefGoogle Scholar
  30. 30.
    Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269, W64PubMedGoogle Scholar
  31. 31.
    Crowther M, Lim W, Crowther MA (2010) Systematic review and meta-analysis methodology. Blood 116:3140–3146PubMedCrossRefGoogle Scholar
  32. 32.
    Moher D, Pham B, Jones A et al (1998) Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet 352:609–613PubMedCrossRefGoogle Scholar
  33. 33.
    Juni P, Witschi A, Bloch R et al (1999) The hazards of scoring the quality of clinical trials for meta-analysis. JAMA 282:1054–1060PubMedCrossRefGoogle Scholar
  34. 34.
    Juni P, Altman DG, Egger M (2001) Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ 323:42–46PubMedCrossRefGoogle Scholar
  35. 35.
    Parmar MK, Torri V, Stewart L (1998) Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 17:2815–2834PubMedCrossRefGoogle Scholar
  36. 36.
    Williamson PR, Smith CT, Hutton JL et al (2002) Aggregate data meta-analysis with time-to-event outcomes. Stat Med 21:3337–3351PubMedCrossRefGoogle Scholar
  37. 37.
    Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21:1559–1573PubMedCrossRefGoogle Scholar
  38. 38.
    van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21:589–624PubMedCrossRefGoogle Scholar
  39. 39.
    Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCrossRefGoogle Scholar
  40. 40.
    Song F, Eastwood AJ, Gilbody S et al (2000) Publication and related biases. Health Technol Assess 4:1–115Google Scholar
  41. 41.
    Jun HX, Jun CY, Yu ZX (2004) In vivo induction of T-cell hyporesponsiveness and alteration of immunological cells of bone marrow grafts using granulocyte colony-stimulating factor. Haematologica 89:1517–1524PubMedGoogle Scholar
  42. 42.
    Jun HX, Jun CY, Yu ZX (2005) A direct comparison of immunological characteristics of granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts and G-CSF-mobilized peripheral blood grafts. Haematologica 90:715–716PubMedGoogle Scholar
  43. 43.
    Liang Y, Liu C, Djeu JY et al (2008) Beta2 integrins separate graft-versus-host disease and graft-versus-leukemia effects. Blood 111:954–962PubMedCrossRefGoogle Scholar
  44. 44.
    Coghill JM, Carlson MJ, Panoskaltsis-Mortari A et al (2010) Separation of graft-versus-host disease from graft-versus-leukemia responses by targeting CC-chemokine receptor 7 on donor T cells. Blood 115:4914–4922PubMedCrossRefGoogle Scholar
  45. 45.
    Gooley TA, Chien JW, Pergam SA et al (2010) Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 363:2091–2101PubMedCrossRefGoogle Scholar
  46. 46.
    Levine JE, Paczesny S, Mineishi S et al (2008) Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood 111:2470–2475PubMedCrossRefGoogle Scholar
  47. 47.
    Duran-Struuck R, Reddy P (2008) Biological advances in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Transplantation 85:303–308PubMedCrossRefGoogle Scholar
  48. 48.
    Ferrara JL, Levine JE, Reddy P et al (2009) Graft-versus-host disease. Lancet 373:1550–1561PubMedCrossRefGoogle Scholar
  49. 49.
    Kim DH, Sohn SK, Won DI et al (2006) Rapid helper T-cell recovery above 200 × 106/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant 37:1119–1128PubMedCrossRefGoogle Scholar
  50. 50.
    Geddes M, Storek J (2007) Immune reconstitution following hematopoietic stem-cell transplantation. Best Pract Res Clin Haematol 20:329–348PubMedCrossRefGoogle Scholar
  51. 51.
    Chang YJ, Zhao XY, Huang XJ (2008) Effects of the NK cell recovery on outcomes of unmanipulated haploidentical blood and marrow transplantation for patients with hematologic malignancies. Biol Blood Marrow Transplant 14:323–334PubMedCrossRefGoogle Scholar
  52. 52.
    Luznik L, Jones RJ, Fuchs EJ (2010) High-dose cyclophosphamide for graft-versus-host disease prevention. Curr Opin Hematol 17:493–499PubMedCrossRefGoogle Scholar
  53. 53.
    Das R, Komorowski R, Hessner MJ et al (2010) Blockade of interleukin-23 signaling results in targeted protection of the colon and allows for separation of graft-versus-host and graft-versus-leukemia responses. Blood 115:5249–5258PubMedCrossRefGoogle Scholar
  54. 54.
    Rodriguez R, Nakamura R, Palmer JM et al (2010) A phase II pilot study of tacrolimus/sirolimus GVHD prophylaxis for sibling donor hematopoietic stem cell transplantation using 3 conditioning regimens. Blood 115:1098–1105PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ying-Jun Chang
    • 1
  • Cui-Lian Weng
    • 2
  • Li-Xia Sun
    • 1
  • Yun-Tao Zhao
    • 3
  1. 1.Department of HematologyThird Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
  2. 2.The First Hospital Affiliated to Xiamen UniversityXiamenChina
  3. 3.Beijing Chaoyang Hospital (Affiliate of Capital Medical University)BeijingChina

Personalised recommendations