Advertisement

Annals of Hematology

, Volume 91, Issue 1, pp 39–46 | Cite as

Treatment of myelodysplastic syndromes with excess of blasts by bevacizumab is well tolerated and is associated with a decrease of VEGF plasma level

  • Laurence LegrosEmail author
  • Bohrane Slama
  • Jean-Michel Karsenti
  • Norbert Vey
  • Shanti Natarajan-Amé
  • Eric Watel
  • Bruno Richard
  • Krimo Bouabdallah
  • Lionel Mannone
  • Maxime Benchetrit
  • Irit Touitou
  • Sébastien Huault
  • Jérome Durivault
  • Damien Ambroseti
  • Anne-Odile Hueber
  • Pierre Fenaux
  • Francois Dreyfus
  • on behalf the Groupe Francophone des Myélodysplasies (GFM)
Original Article

Abstract

Myelodysplastic syndromes (MDS) are associated with increased bone marrow vascularity and increased levels of various angiogenic factors including Vascular Endothelial Growth Factor (VEGF) which is implicated in the proliferation and survival of leukemic cells. Before the approval of hypomethylating agents in this indication, the GFM conducted a multicenter phase II trial testing the efficacy and tolerance of bevacizumab, a humanized monoclonal antibody against VEGF, in MDS with excess of marrow blasts and its impact on bone marrow angiogenesis. Twenty-one patients were enrolled (16 males and five females) with a median age of 70 years and 19 were evaluable for haematological response after treatment (5 mg/kg IV every 2 weeks for 12 weeks). WHO diagnosis at baseline was RAEB-1 (38%) and RAEB-2 (62%). Treatment was well tolerated and was associated with significant decrease of VEGF plasma level [median (low quartile–high quartile)] from 65.5 pg/ml [LQ (low-quartile)–HQ (high quartile), 35.3–87.3 to 30.4 pg/ml (LQ–HQ, 22.5–34.0 pg/ml)] (p < 0.01) and reduction of bone marrow angiogenesis from a median of 20 vessels/mm3 (LQ–HQ, 16.5–33 vessels/mm3) to 15.5 vessels/mm3 (LQ–HQ, 10–23.2 vessels/mm3) (p = 0.03). On the other hand, only one patient had a significant haematological response with achievement of RBC transfusion independence. Thus, although bevacizumab had a significant impact on VEGF levels and angiogenesis in our patients, very few responses were seen when this drug was used as single agent. Given its good tolerability profile, however, combination of bevacizumab with other drugs, especially hypomethylating agents, could be considered in MDS.

Keywords

MDS VEGF Bevacizumab 

Notes

Acknowledgements

The authors would like to thank Pr Jean-Francois Michiels and Philippe Lenormand for technical assistance and Nathalie Varoqueaux from Roche for supporting this work.

Funding

The trial was sponsored by Roche Ltd, Paris, France. This work was supported by institutional funds from promotion permanente, CHU de Nice.

Authorship

LL, FD and PF wrote the paper. LL was the principal investigator and takes primary responsibility for the paper. SH and JD performed the laboratory work for this study. BS, JMK, NB, SNA, EW, BR, CB and LM enrolled patients and collected data. IT monitored the clinical trial. MB and LL analyzed bone marrow biopsies. AOH made substantial contributions, critically reviewed and approved the final version of the report. JPC critically reviewed and approved the final version of the report.

Disclosures

Dr. L Legros has been on a board from Roche France Pharmaceuticals.

References

  1. 1.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51(2):189–199PubMedGoogle Scholar
  2. 2.
    Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (1999) The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 10(12):1419–1432PubMedCrossRefGoogle Scholar
  3. 3.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088PubMedGoogle Scholar
  4. 4.
    Hussong JW, Rodgers GM, Shami PJ (2000) Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 95(1):309–313PubMedGoogle Scholar
  5. 5.
    Aguayo A (2004) The role of angiogenesis in the biology and therapy of myelodysplastic syndromes. Curr Hematol Rep 3(3):184–191PubMedGoogle Scholar
  6. 6.
    Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O’Brien S, Keating M, Freireich E, Albitar M (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96(6):2240–2245PubMedGoogle Scholar
  7. 7.
    Korkolopoulou P, Fau-Apostolidou E, Apostolidou E, Fau-Pavlopoulos PM, Pavlopoulos Pm, Fau-Kavantzas N, Kavantzas N, Fau-Vyniou N, Vyniou N, Fau-Thymara I, Thymara I, Fau-Terpos E, Terpos E, Fau-Patsouris E, Patsouris E, Fau-Yataganas X, Yataganas X, Fau-Davaris P, Davaris P (2001) Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 15(9):1369–1376PubMedCrossRefGoogle Scholar
  8. 8.
    Pruneri G, Bertolini F, Soligo D, Carboni N, Cortelezzi A, Ferrucci PF, Buffa R, Lambertenghi-Deliliers G, Pezzella F (1999) Angiogenesis in myelodysplastic syndromes. Br J Cancer 81(8):1398–1401PubMedCrossRefGoogle Scholar
  9. 9.
    Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J, Buchner T, Berdel WE, Mesters RM (2000) Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 95(8):2637–2644PubMedGoogle Scholar
  10. 10.
    Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105(4):1383–1395PubMedCrossRefGoogle Scholar
  11. 11.
    Bellamy W, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y, Grogan T, List AF (2001) Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97(5):1427–1434PubMedCrossRefGoogle Scholar
  12. 12.
    Dias S, Choy M, Alitalo K, Rafii S (2002) Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 99(6):2179–2184PubMedCrossRefGoogle Scholar
  13. 13.
    Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106(4):511–521PubMedCrossRefGoogle Scholar
  14. 14.
    Dias S, Shmelkov SV, Lam G, Rafii S (2002) VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99(7):2532–2540PubMedCrossRefGoogle Scholar
  15. 15.
    Brunner B, Gunsilius E, Schumacher P, Zwierzina H, Gastl G, Stauder R (2002) Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Hematother Stem Cell Res 11(1):119–125PubMedCrossRefGoogle Scholar
  16. 16.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedCrossRefGoogle Scholar
  17. 17.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550PubMedCrossRefGoogle Scholar
  18. 18.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357(26):2666–2676PubMedCrossRefGoogle Scholar
  19. 19.
    Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, Gorbunova V, Bay JO, Bodrogi I, Jagiello-Gruszfeld A, Moore N (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–2111PubMedCrossRefGoogle Scholar
  20. 20.
    Cheson BD, Bennett JM, Kantarjian H, Pinto A, Schiffer CA, Nimer SD, Lowenberg B, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Wijermans PW, Gore S, Greenberg PL (2000) Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood 96(12):3671–3674PubMedGoogle Scholar
  21. 21.
    Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Gore SD, Schiffer CA, Kantarjian H (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108(2):419–425PubMedCrossRefGoogle Scholar
  22. 22.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  23. 23.
    Ribatti D (2009) Is angiogenesis essential for the progression of hematological malignancies or is it an epiphenomenon? Leukemia 23(3):433–434PubMedCrossRefGoogle Scholar
  24. 24.
    Stucki A, Rivier AS, Gikic M, Monai N, Schapira M, Spertini O (2001) Endothelial cell activation by myeloblasts: molecular mechanisms of leukostasis and leukemic cell dissemination. Blood 97(7):2121–2129PubMedCrossRefGoogle Scholar
  25. 25.
    Liesveld JL, Rosell KE, Lu C, Bechelli J, Phillips G, Lancet JE, Abboud CN (2005) Acute myelogenous leukemia—microenvironment interactions: role of endothelial cells and proteasome inhibition. Hematology 10(6):483–494PubMedCrossRefGoogle Scholar
  26. 26.
    Hatfield K, Oyan AM, Ersvaer E, Kalland KH, Lassalle P, Gjertsen BT, Bruserud O (2009) Primary human acute myeloid leukaemia cells increase the proliferation of microvascular endothelial cells through the release of soluble mediators. Br J Haematol 144(1):53–68PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou J, Mauerer K, Farina L, Gribben JG (2005) The role of the tumor microenvironment in hematological malignancies and implication for therapy. Front Biosci 10:1581–1596PubMedCrossRefGoogle Scholar
  28. 28.
    Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, Hossfeld DK (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89(6):1870–1875PubMedGoogle Scholar
  29. 29.
    Madlambayan GJ, Meacham AM, Hosaka K, Mir S, Jorgensen M, Scott EW, Siemann DW, Cogle CR (2010) Leukemia regression by vascular disruption and antiangiogenic therapy. Blood 116(9):1539–1547PubMedCrossRefGoogle Scholar
  30. 30.
    Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55(23):5687–5692PubMedGoogle Scholar
  31. 31.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3):952–958PubMedGoogle Scholar
  32. 32.
    Bellamy WT (2001) Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 28(6):551–559PubMedCrossRefGoogle Scholar
  33. 33.
    Verheul HM, Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7(6):475–485PubMedCrossRefGoogle Scholar
  34. 34.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65PubMedCrossRefGoogle Scholar
  35. 35.
    Gordon MS, Margolin K, Talpaz M, Sledge GW Jr, Holmgren E, Benjamin R, Stalter S, Shak S, Adelman D (2001) Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19(3):843–850PubMedGoogle Scholar
  36. 36.
    Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–434PubMedCrossRefGoogle Scholar
  37. 37.
    Zahiragic L, Schliemann C, Bieker R, Thoennissen NH, Burow K, Kramer C, Zuhlsdorf M, Berdel WE, Mesters RM (2007) Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute myeloid leukemia without clinical antileukemic activity. Leukemia 21(6):1310–1312PubMedCrossRefGoogle Scholar
  38. 38.
    Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, Qian D, Morris L, Tidwell M, Chen H, Zwiebel J (2004) Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 10(11):3577–3585PubMedCrossRefGoogle Scholar
  39. 39.
    Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach C, Silverman LR (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Laurence Legros
    • 1
    • 2
    • 12
    Email author
  • Bohrane Slama
    • 3
  • Jean-Michel Karsenti
    • 1
  • Norbert Vey
    • 4
  • Shanti Natarajan-Amé
    • 5
  • Eric Watel
    • 6
  • Bruno Richard
    • 7
  • Krimo Bouabdallah
    • 8
  • Lionel Mannone
    • 1
  • Maxime Benchetrit
    • 9
  • Irit Touitou
    • 1
  • Sébastien Huault
    • 2
  • Jérome Durivault
    • 2
  • Damien Ambroseti
    • 9
  • Anne-Odile Hueber
    • 2
  • Pierre Fenaux
    • 10
  • Francois Dreyfus
    • 11
  • on behalf the Groupe Francophone des Myélodysplasies (GFM)
  1. 1.Service d’hématologie cliniqueHôpital de l’ArchetNiceFrance
  2. 2.CNRS UMR 6543, Université de Nice Sophia-Antipolis, Institute of Developmental Biology and Cancer ResearchNiceFrance
  3. 3.Service de Médecine Interne Onco-hématologie et maladies infectieusesCH d’AvignonFrance
  4. 4.Institut Paoli CalmetteMarseilleFrance
  5. 5.Hôpital HautepierreStrasbourgFrance
  6. 6.Hôpital Edouard HerriotLyonFrance
  7. 7.CH NîmesNimesFrance
  8. 8.Hôpital Haut-LévèquePessacFrance
  9. 9.Service d’Anatomie-PathologiqueCHU de NiceNiceFrance
  10. 10.Hôpital Avicenne (Assistance Publique Hôpitaux de Paris)/Paris 13 UniversityBobignyFrance
  11. 11.Service d’HématologieHôpital Cochin, (Assistance Publique Hôpitaux de Paris)ParisFrance
  12. 12.Department of HematologyArchet 1 HospitalNice Cedex 3France

Personalised recommendations