Annals of Hematology

, Volume 90, Issue 9, pp 1037–1045 | Cite as

Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions

  • Leonidas Benetatos
  • Aggeliki Dasoula
  • Eleftheria Hatzimichael
  • Nelofer Syed
  • Maria Voukelatou
  • George Dranitsaris
  • Konstantinos L. Bourantas
  • Tim Crook
Original Article


Polo-like kinase 2 (SNK/PLK2), a transcriptional target for wild-type p53 and is hypermethylated in a high percentage of multiple myeloma and B cell lymphomas patients. Given these data, we sought to study the methylation status of the specific gene in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), and to correlate it with clinical and genetic features. Using methylation-specific PCR MSP, we analyzed the methylation profile of 45 cases of AML and 43 cases of MDS. We also studied the distribution of MTHFR A1298C and MTHFR C677T polymorphisms and FLT3 mutations in AML patients and correlated the results with hypermethylation in the SNK/PLK2 CpG island. The SNK/PLK2 CpG island was hypermethylated in 68.9% and 88.4% of AML and MDS cases, respectively. Cases with hypermethylation had a trend towards more favorable overall survival (OS). There was no association between different MTHFR genotypes and susceptibility to develop AML. SNK/PLK2 hypermethylation combined with the MTHFR AA1298 genotype was associated with a tendency for a better OS. Similarly, patients with SNK/PLK2 hypermethylation combined with the MTHFR CT677 polymorphism had a better OS (HR = 0.34; p = 0.017). SNK/PLK2 methylation associated with unmutated FLT3 cases had a trend for better OS compared to patients with mutated FLT3 gene. SNK/PLK2 is a novel epigenetically regulated gene in AML and MDS, and methylation occurs at high frequency in both diseases. As such, SNK/PLK2 could represent a potential pathogenetic factor, although additional studies are necessary to verify its exact role in disease pathogenesis.


SNK/PLK2 Methylation AML MDS MTHFR polymorphisms 


  1. 1.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159PubMedCrossRefGoogle Scholar
  2. 2.
    Rush LJ, Plass C (2002) Alterations of DNA methylation in hematologic malignancies. Cancer Lett 185:1–12PubMedCrossRefGoogle Scholar
  3. 3.
    Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11PubMedCrossRefGoogle Scholar
  4. 4.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610PubMedCrossRefGoogle Scholar
  5. 5.
    Rice KL, Hormaeche I, Licht JD (2007) Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 26:6697–6714PubMedCrossRefGoogle Scholar
  6. 6.
    Boultwood J, Wainscoat JS (2007) Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138:3–11PubMedCrossRefGoogle Scholar
  7. 7.
    Donaldson MM, Tavares AA, Hagan IM, Nigg EA, Glover DM (2001) The mitotic roles of Polo-like kinase. J Cell Sci 114:2357–2358PubMedGoogle Scholar
  8. 8.
    Smith P, Syed N, Crook T (2006) Epigenetic inactivation implies a tumor suppressor function in hematologic malignancies for Polo-like kinase 2 but not Polo-like kinase 3. Cell Cycle 5:1262–1264PubMedCrossRefGoogle Scholar
  9. 9.
    van de Weerdt BC, Medema RH (2006) Polo-like kinases: a team in control of the division. Cell Cycle 5:853–864PubMedCrossRefGoogle Scholar
  10. 10.
    Cizmecioglu O, Warnke S, Arnold M, Duensing S, Hoffmann I (2008) Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain. Cell Cycle 7:3548–3555PubMedCrossRefGoogle Scholar
  11. 11.
    Winkles JA, Alberts GF (2005) Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24:260–266PubMedCrossRefGoogle Scholar
  12. 12.
    Ma S, Charron J, Erikson RL (2003) Role of Plk2 (Snk) in mouse development and cell proliferation. Mol Cell Biol 23:6936–6943PubMedCrossRefGoogle Scholar
  13. 13.
    Burns TF, Fei P, Scata KA, Dicker DT, El-Deiry WS (2003) Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol 23:5556–5571PubMedCrossRefGoogle Scholar
  14. 14.
    Eckerdt F, Yuan J, Strebhardt K (2005) Polo-like kinases and oncogenesis. Oncogene 24:267–276PubMedCrossRefGoogle Scholar
  15. 15.
    Krämer A, Neben K, Ho AD (2005) Centrosome aberrations in hematological malignancies. Cell Biol Int 29:375–383PubMedCrossRefGoogle Scholar
  16. 16.
    Matthew EM, Hart LS, Astrinidis A, Navaraj A, Dolloff NG, Dicker DT, Henske EP, El-Deiry WS (2009) The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions. Cell Cycle 8:4168–4175PubMedCrossRefGoogle Scholar
  17. 17.
    Hatzimichael E, Dasoula A, Benetatos L, Syed N, Dranitsaris G, Crook T, Bourantas K (2010) Study of specific genetic and epigenetic variables in multiple myeloma. Leuk Lymphoma 51:2270–2274PubMedCrossRefGoogle Scholar
  18. 18.
    Syed N, Smith P, Sullivan A, Spender LC, Dyer M, Karran L, O’Nions J, Allday M, Hoffmann I, Crawford D, Griffin B, Farrell PJ, Crook T (2006) Transcriptional silencing of Polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Blood 107:250–256PubMedCrossRefGoogle Scholar
  19. 19.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951PubMedCrossRefGoogle Scholar
  20. 20.
    Valent P, Horny HP, Bennett JM, Fonatsch C, Germing U, Greenberg P, Haferlach T, Haase D, Kolb HJ, Krieger O, Loken M, van de Loosdrecht A, Ogata K, Orfao A, Pfeilstöcker M, Rüter B, Sperr WR, Stauder R, Wells DA (2007) Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res 31:727–736PubMedCrossRefGoogle Scholar
  21. 21.
    Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, Giagounidis A, Hildebrandt B, Bernasconi P, Knipp S, Strupp C, Lazzarino M, Aul C, Cazzola M (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25:3503–3510PubMedCrossRefGoogle Scholar
  22. 22.
    Fröhling S, Scholl C, Gilliland DG, Levine RL (2005) Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 23:6285–6295PubMedCrossRefGoogle Scholar
  23. 23.
    Skibola CF, Smith MT, Kane E, Roman E, Rollinson S, Cartwright RA, Morgan G (1999) Polymorphisms in the methylenetetrahydrofolatereductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci USA 96:12810–12815PubMedCrossRefGoogle Scholar
  24. 24.
    Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Löwenberg B, Sanz MA, Head DR, Ohno R, International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia (2003) Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21:4642–4649PubMedCrossRefGoogle Scholar
  25. 25.
    Nimer SD (2008) Myelodysplastic syndromes. Blood 111:4841–4851PubMedCrossRefGoogle Scholar
  26. 26.
    Tefferi A, Vardiman JW (2009) Myelodysplastic syndromes. N Engl J Med 361:1872–1885PubMedCrossRefGoogle Scholar
  27. 27.
    Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P, Preudhomme C (2008) Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 22:915–931PubMedCrossRefGoogle Scholar
  28. 28.
    Esteller M (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109:80–88PubMedCrossRefGoogle Scholar
  29. 29.
    Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Löwenberg B, Delwel R, Melnick A (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27PubMedCrossRefGoogle Scholar
  30. 30.
    Kroeger H, Jelinek J, Estécio MR, He R, Kondo K, Chung W, Zhang L, Shen L, Kantarjian HM, Bueso-Ramos CE, Issa JP (2008) Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood 112:1366–1373PubMedCrossRefGoogle Scholar
  31. 31.
    Deneberg S, Grövdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, Gaidzik V, Döhner K, Paul C, Ekström TJ, Hellström-Lindberg E, Lehmann S (2010) Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia 24:932–941PubMedCrossRefGoogle Scholar
  32. 32.
    Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C, Sekeres M, Saunthararajah Y, Maciejewski JP (2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113:1315–1325PubMedCrossRefGoogle Scholar
  33. 33.
    Wu SJ, Yao M, Chou WC, Tang JL, Chen CY, Ko BS, Huang SY, Tsay W, Chen YC, Shen MC, Wang CH, Yeh YC, Tien HF (2006) Clinical implications of SOCS1 methylation in myelodysplastic syndrome. Br J Haematol 135:317–323PubMedCrossRefGoogle Scholar
  34. 34.
    Potapova A, Hasemeier B, Römermann D, Metzig K, Göhring G, Schlegelberger B, Länger F, Kreipe H, Lehmann U (2010) Epigenetic inactivation of tumour suppressor gene KLF11 in myelodysplastic syndromes. Eur J Haematol 84:298–303PubMedCrossRefGoogle Scholar
  35. 35.
    Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X, Berry D, Ahmed S, Zhu W, Pierce S, Kondo Y, Oki Y, Jelinek J, Saba H, Estey E, Issa JP (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–613PubMedCrossRefGoogle Scholar
  36. 36.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054PubMedCrossRefGoogle Scholar
  37. 37.
    Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299:2423–2436PubMedCrossRefGoogle Scholar
  38. 38.
    Kim HN, Kim YK, Lee IK, Yang DH, Lee JJ, Shin MH, Park KS, Choi JS, Park MR, Jo DY, Won JH, Kwak JY, Kim HJ (2009) Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res 33:82–87PubMedCrossRefGoogle Scholar
  39. 39.
    Guillem VM, Collado M, Terol MJ, Calasanz MJ, Esteve J, Gonzalez M, Sanzo C, Nomdedeu J, Bolufer P, Lluch A, Tormo M (2007) Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies. Leukemia 21:1413–1422PubMedCrossRefGoogle Scholar
  40. 40.
    Bolufer P, Collado M, Barragan E, Calasanz MJ, Colomer D, Tormo M, González M, Brunet S, Batlle M, Cervera J, Sanz MA (2007) Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 136:590–596PubMedCrossRefGoogle Scholar
  41. 41.
    Meshinchi S, Appelbaum FR (2009) Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res 15:4263–4269PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Leonidas Benetatos
    • 1
  • Aggeliki Dasoula
    • 1
  • Eleftheria Hatzimichael
    • 1
  • Nelofer Syed
    • 2
  • Maria Voukelatou
    • 1
  • George Dranitsaris
    • 3
  • Konstantinos L. Bourantas
    • 1
  • Tim Crook
    • 2
  1. 1.Department of HematologyUniversity Hospital of IoanninaIoanninaGreece
  2. 2.Imperial College, Charing Cross HospitalLondonUK
  3. 3.Department of Medical OncologyPrincess Margaret HospitalTorontoCanada

Personalised recommendations