Advertisement

Annals of Hematology

, Volume 90, Issue 8, pp 865–871 | Cite as

Prolonged transendothelial migration of human haematopoietic stem and progenitor cells (HSPCs) towards hydrogel-released SDF1

  • Lidia Sobkow
  • F. Philipp Seib
  • Ljupco Prodanov
  • Ina Kurth
  • Juliane Drichel
  • Martin Bornhäuser
  • Carsten Werner
Original Article

Abstract

The therapeutic success of haematopoetic stem and progenitor cell (HSPC) transplantation is critically dependent on HSPC engraftment in the bone marrow. Gradients of stromal cell-derived factor 1 (SDF1) direct HSPC homing, both in vitro and in vivo. Potentially, regulating the delivery levels of exogenous SDF1 applied to the bone marrow could augment HSPC engraftment. Thus, the aim of the present study was to revise the ability of biocompatible hydrogels to direct HSPC migration in vitro. The delivery system of choice is based on heparin cross-linked with collagen1. We confirm that hydrogel is capable of trapping and releasing SDF1 and using it to generate a protein gradient in transendothelial migration experiments. The use of SDF1-functionalised hydrogel to produce a chemokine gradient revealed, sustained and increased HSPC migration when compared to diffusible SDF1 controls. In conclusion, regulating SDF1 gradients with heparin-containing hydrogels may offer valuable options to direct site-specific migration of HSPC.

Keywords

HSPC SDF1 Heparin Collagen Migration Gradient 

Notes

Acknowledgements

This work was supported by the Leibniz Association (Senatswettbewerb LS, MB and CW), the Deutsche Forschungsgemeinschaft, ″Collaborative Research Centre: Cells into tissues- stem cell and progenitor commitment and interactions during tissue formation″ (SFB 655, Dresden, FPS, MB and CW) and the Centre for Regenerative Therapies Dresden (DFG Research Centre and Cluster of Excellence).

Support and financial disclosure declaration

Authors declare no competing financial interests.

References

  1. 1.
    Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114:1150–1157PubMedCrossRefGoogle Scholar
  2. 2.
    Lymperi S, Ferraro F, Scadden DT (2010) The HSC niche concept has turned 31. Has our knowledge matured? Ann NY Acad Sci 1192:12–18PubMedCrossRefGoogle Scholar
  3. 3.
    Xie Y, Yin T, Wiegraebe W et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101PubMedCrossRefGoogle Scholar
  4. 4.
    Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783PubMedCrossRefGoogle Scholar
  5. 5.
    Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34:967–975PubMedCrossRefGoogle Scholar
  6. 6.
    Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910PubMedCrossRefGoogle Scholar
  7. 7.
    Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16:1992–2003PubMedCrossRefGoogle Scholar
  8. 8.
    Peled A, Kollet O, Ponomaryov T et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296PubMedGoogle Scholar
  9. 9.
    Waskow C, Madan V, Bartels S, Costa C, Blasig R, Rodewald HR (2009) Hematopoietic stem cell transplantation without irradiation. Nat Methods 6:267–269PubMedCrossRefGoogle Scholar
  10. 10.
    Tyndall A, Fassas A, Passweg J et al (1999) Autologous haematopoietic stem cell transplants for autoimmune disease–feasibility and transplant-related mortality. Autoimmune Disease and Lymphoma Working Parties of the European Group for Blood and Marrow Transplantation, the European League Against Rheumatism and the International Stem Cell Project for Autoimmune Disease. Bone Marrow Transplant 24:729–734PubMedCrossRefGoogle Scholar
  11. 11.
    Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 27:1569–1575PubMedCrossRefGoogle Scholar
  12. 12.
    Hattori K, Heissig B, Rafii S (2003) The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma 44:575–582PubMedCrossRefGoogle Scholar
  13. 13.
    Liekens S, Schols D, Hatse S (2010) CXCL12-CXCR4 Axis in Angiogenesis, Metastasis and Stem Cell Mobilization. Curr Pharm Des (in press)Google Scholar
  14. 14.
    Sun X, Cheng G, Hao M et al (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29:709–722PubMedCrossRefGoogle Scholar
  15. 15.
    DiVietro JA, Brown DC, Sklar LA, Larson RS, Lawrence MB (2007) Immobilized stromal cell-derived factor-1alpha triggers rapid VLA-4 affinity increases to stabilize lymphocyte tethers on VCAM-1 and subsequently initiate firm adhesion. J Immunol 178:3903–3911PubMedGoogle Scholar
  16. 16.
    Netelenbos T, van den Born J, Kessler FL et al (2003) Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17:175–184PubMedCrossRefGoogle Scholar
  17. 17.
    Netelenbos T, Zuijderduijn S, Van Den Born J et al (2002) Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells. J Leukoc Biol 72:353–362PubMedGoogle Scholar
  18. 18.
    Pelletier AJ, van der Laan LJ, Hildbrand P et al (2000) Presentation of chemokine SDF-1 alpha by fibronectin mediates directed migration of T cells. Blood 96:2682–2690PubMedGoogle Scholar
  19. 19.
    Salchert K, Oswald J, Streller U, Grimmer M, Herold N, Werner C (2005) Fibrillar collagen assembled in the presence of glycosaminoglycans to constitute bioartificial stem cell niches in vitro. J Mater Sci Mater Med 16:581–585PubMedCrossRefGoogle Scholar
  20. 20.
    Salchert K, Streller U, Pompe T, Herold N, Grimmer M, Werner C (2004) In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces. Biomacromolecules 5:1340–1350PubMedCrossRefGoogle Scholar
  21. 21.
    Pompe T, Zschoche S, Herold N et al (2003) Maleic anhydride copolymers–a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079PubMedCrossRefGoogle Scholar
  22. 22.
    Freund D, Oswald J, Feldmann S, Ehninger G, Corbeil D, Bornhauser M (2006) Comparative analysis of proliferative potential and clonogenicity of MACS-immunomagnetic isolated CD34+ and CD133+ blood stem cells derived from a single donor. Cell Prolif 39:325–332PubMedCrossRefGoogle Scholar
  23. 23.
    Kohler T, Plettig R, Wetzstein W et al (1999) Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels. Stem Cells 17:19–24PubMedCrossRefGoogle Scholar
  24. 24.
    Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G (2002) Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99:2703–2711PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenkilde MM, Gerlach LO, Jakobsen JS, Skerlj RT, Bridger GJ, Schwartz TW (2004) Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem 279:3033–3041PubMedCrossRefGoogle Scholar
  26. 26.
    Freudenberg U, Hermann A, Welzel PB et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060PubMedCrossRefGoogle Scholar
  27. 27.
    Tabesh H, Amoabediny G, Nik NS et al (2009) The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 54:73–83PubMedCrossRefGoogle Scholar
  28. 28.
    Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR (2008) Myocardial tissue engineering. Br Med Bull 87:31–47PubMedCrossRefGoogle Scholar
  29. 29.
    Spadaccio C, Chello M, Trombetta M, Rainer A, Toyoda Y, Genovese JA (2009) Drug releasing systems in cardiovascular tissue engineering. J Cell Mol Med 13:422–439PubMedCrossRefGoogle Scholar
  30. 30.
    Mbemba E, Gluckman JC, Gattegno L (2000) Glycan and glycosaminoglycan binding properties of stromal cell-derived factor (SDF)-1alpha. Glycobiology 10:21–29PubMedCrossRefGoogle Scholar
  31. 31.
    Sadir R, Imberty A, Baleux F, Lortat-Jacob H (2004) Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem 279:43854–43860PubMedCrossRefGoogle Scholar
  32. 32.
    Mohle R, Moore MA, Nachman RL, Rafii S (1997) Transendothelial migration of CD34+ and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line. Blood 89:72–80PubMedGoogle Scholar
  33. 33.
    Dar A, Goichberg P, Shinder V et al (2005) Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 6:1038–1046PubMedCrossRefGoogle Scholar
  34. 34.
    Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 195:1145–1154PubMedCrossRefGoogle Scholar
  35. 35.
    Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRefGoogle Scholar
  36. 36.
    Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318PubMedCrossRefGoogle Scholar
  37. 37.
    Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109PubMedCrossRefGoogle Scholar
  38. 38.
    Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedCrossRefGoogle Scholar
  39. 39.
    Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia 18:29–40PubMedCrossRefGoogle Scholar
  40. 40.
    Chen T, Bai H, Shao Y et al (2007) Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro. Stem Cells 25:392–401PubMedCrossRefGoogle Scholar
  41. 41.
    Zemani F, Silvestre JS, Fauvel-Lafeve F et al (2008) Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol 28:644–650PubMedCrossRefGoogle Scholar
  42. 42.
    Yu J, Li M, Qu Z, Yan D, Li D, Ruan Q (2010) SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. J Cardiovasc Pharmacol 55:496–505PubMedGoogle Scholar
  43. 43.
    Paczkowska E, Kucia M, Koziarska D et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244PubMedCrossRefGoogle Scholar
  44. 44.
    Kollet O, Shivtiel S, Chen YQ et al (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112:160–169PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lidia Sobkow
    • 1
    • 2
    • 3
  • F. Philipp Seib
    • 1
    • 2
  • Ljupco Prodanov
    • 1
  • Ina Kurth
    • 1
  • Juliane Drichel
    • 1
  • Martin Bornhäuser
    • 2
  • Carsten Werner
    • 1
  1. 1.Leibniz Institute for Polymer Research DresdenMax Bergmann Centre for Biomaterials DresdenDresdenGermany
  2. 2.University Hospital Carl Gustav CarusTechnical University DresdenDresdenGermany
  3. 3.Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA

Personalised recommendations