Advertisement

Annals of Hematology

, Volume 90, Issue 4, pp 447–453 | Cite as

Circulating procoagulant microparticles in cancer patients

  • Johannes Thaler
  • Cihan Ay
  • Harald Weinstabl
  • Daniela Dunkler
  • Ralph Simanek
  • Rainer Vormittag
  • Jean-Marie Freyssinet
  • Christoph Zielinski
  • Ingrid PabingerEmail author
Original Article

Abstract

Accumulating evidence indicates that microparticles (MPs) are important mediators of the interaction between cancer and the hemostatic system. We conducted a large prospective cohort study to determine whether the number of circulating procoagulant MPs is elevated in cancer patients and whether the elevated MP levels are predictive of occurrence of venous thrombembolism (VTE). We analyzed plasma samples of 728 cancer patients from the ongoing prospective observational Vienna Cancer and Thrombosis Study. Study endpoint was the occurrence of symptomatic VTE. Sixty-five age- and sex-matched healthy controls were recruited for defining the cut-off point for elevated MPs (4.62 nanomolar phosphatidylserine [nM PS]), which was set at the 95th percentile of MP levels in healthy controls. The measurement of MPs was performed after capture onto immobilized annexin V, and determination of their procoagulant activity was quantified with a prothrombinase assay. During a median observation period of 710 days, 53 patients developed VTE. MP levels (nM PS) were significantly higher in cancer patients than in healthy controls (median [25th–75th percentile], 3.95 [1.74–7.96] vs. 1.19 [0.81–1.67], p < 0.001). Multivariate analysis including age, sex, surgery, chemo- and radiotherapy showed no statistically significant association of the hazard ratio of elevated MPs with VTE (0.95 [95% CI, 0.55–1.64], p = 0.856). In conclusion, MP levels were elevated in cancer patients compared to healthy individuals in this study. However, elevated MP levels were not predictive of VTE.

Keywords

Microparticles Cancer Venous thromboembolism Prothrombinase assay 

Abbreviations

CATS

Cancer and Thrombosis Study

CI

Confidence interval

MPs

Microparticles

HR

Hazard ratio

PFP

Platelet-free plasma

nM PS

Nanomolar phosphatidylserine equivalent

PS

Phosphatidylserine

PSGL-1

P-selectin glycoprotein ligand

TF

Tissue factor

VTE

Venous thromboembolism

Notes

Acknowledgements

We thank all persons that supported us in patient recruitment for the Vienna Cancer and Thrombosis Study (CATS), Silvia Koder for skillful technical assistance, and Tanja Altreiter for proof-reading of the manuscript.

Financial support

This study was supported by grants from the “Jubiläumsfonds” of the Austrian National Bank, by an unrestricted grant from Pfizer Austria, and the “Fellinger Krebsforschung”.

References

  1. 1.
    Siljander P, Carpen O, Lassila R (1996) Platelet-derived microparticles associate with fibrin during thrombosis. Blood 87I:4651–4663Google Scholar
  2. 2.
    Willekens FL, Werre JM, Groenen-Dopp YA et al (2008) Erythrocyte vesiculation: a self-protective mechanism? Br J Haematol 141I:549–556CrossRefGoogle Scholar
  3. 3.
    Sabatier F, Roux V, Anfosso F et al (2002) Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 99I:3962–3970CrossRefGoogle Scholar
  4. 4.
    Diamant M, Tushuizen ME, Sturk A et al (2004) Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest 34I:392–401CrossRefGoogle Scholar
  5. 5.
    Satta N, Freyssinet JM, Toti F (1997) The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. Br J Haematol 96I:534–542CrossRefGoogle Scholar
  6. 6.
    Schecter AD, Spirn B, Rossikhina M et al (2000) Release of active tissue factor by human arterial smooth muscle cells. Circ Res 87I:126–132Google Scholar
  7. 7.
    Hugel B, Martinez MC, Kunzelmann C et al (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20I:22–27Google Scholar
  8. 8.
    Falati S, Liu Q, Gross P et al (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle p-selectin glycoprotein ligand 1 and platelet p-selectin. J Exp Med 197I:1585–1598CrossRefGoogle Scholar
  9. 9.
    Del Conde I, Bharwani LD, Dietzen DJ et al (2007) Microvesicle-associated tissue factor and Trousseau’s syndrome. J Thromb Haemost 5I:70–74CrossRefGoogle Scholar
  10. 10.
    Zwicker JI, Liebman HA, Neuberg D et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15I:6830–6840CrossRefGoogle Scholar
  11. 11.
    Morel O, Toti F, Hugel B et al (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26I:2594–2604CrossRefGoogle Scholar
  12. 12.
    Polgar J, Matuskova J, Wagner DD (2005) The p-selectin, tissue factor, coagulation triad. J Thromb Haemost 3I:1590–1596CrossRefGoogle Scholar
  13. 13.
    Tesselaar ME, Romijn FP, Van Der Linden IK et al (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5I:520–527CrossRefGoogle Scholar
  14. 14.
    Chirinos JA, Heresi GA, Velasquez H et al (2005) Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 45I:1467–1471CrossRefGoogle Scholar
  15. 15.
    Ay C, Freyssinet JM, Sailer T et al (2009) Circulating procoagulant microparticles in patients with venous thromboembolism. Thromb Res 123I:724–726CrossRefGoogle Scholar
  16. 16.
    Heit JA, Silverstein MD, Mohr DN et al (2000) Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med 160I:809–815CrossRefGoogle Scholar
  17. 17.
    Blom JW, Doggen CJ, Osanto S et al (2005) Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 293I:715–722CrossRefGoogle Scholar
  18. 18.
    Sousou T, Khorana A (2009) Identifying cancer patients at risk for venous thromboembolism. Hamostaseologie 29I:121–124Google Scholar
  19. 19.
    Toth B, Liebhardt S, Steinig K et al (2008) Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb Haemost 100I:663–669Google Scholar
  20. 20.
    Kim HK, Song KS, Park YS et al (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39I:184–191CrossRefGoogle Scholar
  21. 21.
    Sud R, Khorana AA (2009) Cancer-associated thrombosis: risk factors, candidate biomarkers and a risk model. Thromb Res 123(Suppl 4I):S18–S21PubMedCrossRefGoogle Scholar
  22. 22.
    Langer F, Spath B, Haubold K, Holstein K, Marx G, Wierecky J, Brümmendorf TH, Dierlamm J, Bokemeyer C, Eifrig B (2008) Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation. Ann Hematol 87I:451–457CrossRefGoogle Scholar
  23. 23.
    Ay C, Simanek R, Vormittag R et al (2008) High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 112I:2703–2708CrossRefGoogle Scholar
  24. 24.
    Vormittag R, Simanek R, Ay C et al (2009) High factor VIII levels independently predict venous thromboembolism in cancer patients: the cancer and thrombosis study. Arterioscler Thromb Vasc Biol 29I:2176–2181CrossRefGoogle Scholar
  25. 25.
    Ay C, Vormittag R, Dunkler D et al (2009) D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 27I:4124–4129CrossRefGoogle Scholar
  26. 26.
    Aupeix K, Hugel B, Martin T et al (1997) The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest 99I:1546–1554CrossRefGoogle Scholar
  27. 27.
    Pigault C, Follenius-Wund A, Schmutz M et al (1994) Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J Mol Biol 236I:199–208CrossRefGoogle Scholar
  28. 28.
    Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104I:10–14CrossRefGoogle Scholar
  29. 29.
    Hron G, Kollars M, Weber H et al (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97I:119–123Google Scholar
  30. 30.
    Kakkar AK, Levine M, Pinedo HM et al (2003) Venous thrombosis in cancer patients: insights from the frontline survey. Oncologist 8I:381–388CrossRefGoogle Scholar
  31. 31.
    Jenkins EO, Schiff D, Mackman N et al (2010) Venous thromboembolism in malignant gliomas. J Thromb Haemost 8:221–227PubMedCrossRefGoogle Scholar
  32. 32.
    Simanek R, Vormittag R, Hassler M et al (2007) Venous thromboembolism and survival in patients with high-grade glioma. Neuro Oncol 9I:89–95CrossRefGoogle Scholar
  33. 33.
    Semrad TJ, O’Donnell R, Wun T et al (2007) Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J Neurosurg 106I:601–608Google Scholar
  34. 34.
    Rong Y, Post DE, Pieper RO et al (2005) PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 65:1406–1413PubMedCrossRefGoogle Scholar
  35. 35.
    Jy W, Horstman LL, Jimenez JJ et al (2004) Measuring circulating cell-derived microparticles. J Thromb Haemost 2I:1842–1851CrossRefGoogle Scholar
  36. 36.
    Abid Hussein MN, Boing AN, Biro E et al (2008) Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties. Thromb Res 121I:865–871CrossRefGoogle Scholar
  37. 37.
    Biro E, Akkerman JW, Hoek FJ et al (2005) The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J Thromb Haemost 3I:2754–2763CrossRefGoogle Scholar
  38. 38.
    Weerheim AM, Kolb AM, Sturk A et al (2002) Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem 302I:191–198CrossRefGoogle Scholar
  39. 39.
    Nieuwland R, Berckmans RJ, McGregor S et al (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95I:930–935Google Scholar
  40. 40.
    Sabatier F, Darmon P, Hugel B et al (2002) Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 51I:2840–2845CrossRefGoogle Scholar
  41. 41.
    Mallat Z, Benamer H, Hugel B et al (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101I:841–843Google Scholar
  42. 42.
    Manly DA, Wang J, Glover SL et al (2009) Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 125I:511–512Google Scholar
  43. 43.
    Gonzalez-Quintero VH, Jimenez JJ, Jy W et al (2003) Elevated plasma endothelial microparticles in preeclampsia. Am J Obstet Gynecol 189I:589–593CrossRefGoogle Scholar
  44. 44.
    Valeri CR, Ragno G, Khuri S (2005) Freezing human platelets with 6 percent dimethyl sulfoxide with removal of the supernatant solution before freezing and storage at −80 degrees C without postthaw processing. Transfusion 45I:1890–1898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Johannes Thaler
    • 1
  • Cihan Ay
    • 1
  • Harald Weinstabl
    • 1
  • Daniela Dunkler
    • 2
  • Ralph Simanek
    • 1
  • Rainer Vormittag
    • 1
  • Jean-Marie Freyssinet
    • 4
  • Christoph Zielinski
    • 3
  • Ingrid Pabinger
    • 1
    Email author
  1. 1.Department of Medicine I, Clinical Division of Haematology and HaemostaseologyMedical University of ViennaViennaAustria
  2. 2.Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical BiometricsMedical University of ViennaViennaAustria
  3. 3.Department of Medicine I, Clinical Division of OncologyMedical University of ViennaViennaAustria
  4. 4.Faculté de Médecine, Institut d’Hématologie & Immunologie, U. 770 INSERM Hôpital de BicêtreUniversité Paris-Sud, Le Kremlin-Bicêtre, Université Louis PasteurStrasbourgFrance

Personalised recommendations