Annals of Hematology

, Volume 89, Issue 7, pp 643–652 | Cite as

Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies

  • Ulrike Bacher
  • Claudia Haferlach
  • Susanne Schnittger
  • Alexander Kohlmann
  • Wolfgang Kern
  • Torsten Haferlach
Review Article


Despite recent progress in molecular research in myeloid malignancies, in subsets of patients with myelodysplastic syndrome (MDS) so far no underlying mutation was identified. In the myeloproliferative neoplasms (MPNs), the JAK2V617F alone cannot explain the phenotypic heterogeneity. In acute myeloid leukemia (AML), clinical variability exists within distinct subgroups. Thus, the search for novel molecular markers continues. Recently, mutations of the tet oncogene family member 2 (TET2) and Casitas B-cell lymphoma (CBL) genes became the focus of interest. With diverse genetic methods, TET2 on chromosome 4q24 was identified as candidate tumor suppressor gene. Sequencing studies revealed heterogeneous mutations in 10–25% of patients with acute myeloid leukemia (AML), MDS, and MPNs, while the frequency might be higher in chronic myelomonocytic leukemia (CMML). The prognostic impact is being explored. The CBL gene is involved in the degradation of tyrosine kinases. In rare cases of human AML (<2%), CBL mutants were identified, with a higher frequency in core binding factor leukemias. Presence of these mutations was suggested to be involved in aberrant FLT3 expression. In the MPNs, a 2–8% frequency of CBL mutations was reported. These novel mutations deepened insights in the mechanisms of leukemogenesis, might contribute to the identification of new therapeutic targets, and improve diagnostics in the myeloid malignancies.


TET2 mutation CBL mutation Acute myeloid leukemia (AML) Myelodysplastic syndrome (MDS) Myeloproliferative neoplasms (MPNs) 


  1. 1.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266CrossRefPubMedGoogle Scholar
  2. 2.
    Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27:263–270CrossRefPubMedGoogle Scholar
  3. 3.
    Swerdlow S, Campo E, Lee Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. WHO press, LyonGoogle Scholar
  4. 4.
    Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P, Vukosavljevic T, Whitman SP, Baldus CD, Langer C, Liu CG, Carroll AJ, Powell BL, Garzon R, Croce CM, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358:1919–1928CrossRefPubMedGoogle Scholar
  5. 5.
    Bloomfield CD, Shuma C, Regal L, Philip PP, Hossfeld DK, Hagemeijer AM, Garson OM, Peterson BA, Sakurai M, Alimena G, Berger R, Rowley JD, Ruutu T, Mitelman F, Dewald GW, Swansbury J (1997) Long-term survival of patients with acute myeloid leukemia: a third follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer 80(11 Suppl):2191–2198CrossRefPubMedGoogle Scholar
  6. 6.
    Swansbury GJ, Lawler SD, Alimena G, Arthur D, Berger R, Van den Berghe H, Bloomfield CD, de la Chappelle A, Dewald G, Garson OM (1994) Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 73:1–7CrossRefPubMedGoogle Scholar
  7. 7.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083PubMedGoogle Scholar
  8. 8.
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T, Haferlach T, Hiddemann W (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66CrossRefPubMedGoogle Scholar
  9. 9.
    Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542CrossRefPubMedGoogle Scholar
  10. 10.
    Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2004) Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104:1474–1481CrossRefPubMedGoogle Scholar
  11. 11.
    Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 92:744–752CrossRefPubMedGoogle Scholar
  12. 12.
    Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH (2008) Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 22:240–248CrossRefPubMedGoogle Scholar
  13. 13.
    Niimi H, Harada H, Harada Y, Ding Y, Imagawa J, Inaba T, Kyo T, Kimura A (2006) Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia 20:635–644CrossRefPubMedGoogle Scholar
  14. 14.
    Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, Kundgen A, Lubbert M, Kunzmann R, Giagounidis AA, Aul C, Trumper L, Krieger O, Stauder R, Muller TH, Wimazal F, Valent P, Fonatsch C, Steidl C (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395CrossRefPubMedGoogle Scholar
  15. 15.
    Tefferi A, Lasho TL, Gilliland G (2005) JAK2 mutations in myeloproliferative disorders. N Engl J Med 353:1416–1417CrossRefPubMedGoogle Scholar
  16. 16.
    Levine RL, Gilliland DG (2007) JAK-2 mutations and their relevance to myeloproliferative disease. Curr Opin Hematol 14:43–47CrossRefPubMedGoogle Scholar
  17. 17.
    Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ, McClure RF, Litzow MR, Gilliland DG, Tefferi A (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:3472–3476CrossRefPubMedGoogle Scholar
  18. 18.
    Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A, Ferrari M, Gisslinger H, Kralovics R, Cremonesi L, Skoda R, Cazzola M (2008) Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 111:1686–1689CrossRefPubMedGoogle Scholar
  19. 19.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301CrossRefPubMedGoogle Scholar
  20. 20.
    Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, Stevens-Linders E, van Hoogen P, van Kessel AG, Raymakers RA, Kamping EJ, Verhoef GE, Verburgh E, Hagemeijer A, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842CrossRefPubMedGoogle Scholar
  21. 21.
    Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM, Hanson CA, Pardanani A, Gilliland DG, Levine RL (2009) Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23:1343–1345CrossRefPubMedGoogle Scholar
  22. 22.
    Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP (2008) 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68:10349–10357CrossRefPubMedGoogle Scholar
  23. 23.
    Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M, Thiessen C, Tickenbrock L, Schwable J, Brandts C, August B, Koschmieder S, Bandi SR, Duyster J, Berdel WE, Muller-Tidow C, Dikic I, Serve H (2007) Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110:1004–1012CrossRefPubMedGoogle Scholar
  24. 24.
    Tefferi A, Pardanani A, Lim KH, bdel-Wahab O, Lasho TL, Patel J, Gangat N, Finke CM, Schwager S, Mullally A, Li CY, Hanson CA, Mesa R, Bernard O, Delhommeau F, Vainchenker W, Gilliland DG, Levine RL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23:905–911CrossRefPubMedGoogle Scholar
  25. 25.
    Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641CrossRefPubMedGoogle Scholar
  26. 26.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R, Huberman K, Thomas S, Dolgalev I, Heguy A, Paietta E, Le Beau MM, Beran M, Tallman MS, Ebert BL, Kantarjian HM, Stone RM, Gilliland DG, Crispino JD, Levine RL (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147CrossRefPubMedGoogle Scholar
  27. 27.
    Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, la-Valle V, Picard F, Viguie F, Quesnel B, Beyne-Rauzy O, Solary E, Vey N, Hunault-Berger M, Fenaux P, Mansat-De Mas V, Delabesse E, Guardiola P, Lacombe C, Vainchenker W, Preudhomme C, Dreyfus F, Bernard OA, Birnbaum D, Fontenay M (2009) TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDS). Blood 114:3285–3291CrossRefPubMedGoogle Scholar
  28. 28.
    Kosmider O, Gelsi-Boyer V, Ciudad M, Racoeur C, Jooste V, Vey N, Quesnel B, Fenaux P, Bastie JN, Beyne-Rauzy O, Stamatoulas A, Dreyfus F, Ifrah N, de Botton S, Vainchenker W, Bernard OA, Birnbaum D, Fontenay M, Solary E (2009) TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94:1676–1681CrossRefPubMedGoogle Scholar
  29. 29.
    Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, Plo I, Bordessoule D, Chomienne C, Delannoy A, Devidas A, Gardembas-Pain M, Isnard F, Plumelle Y, Bernard O, Vainchenker W, Najman A, Bellanne-Chantelot C (2009) Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood 114:1628–1632CrossRefPubMedGoogle Scholar
  30. 30.
    Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Gangat N, Finke CM, Schwager S, Mullally A, Li CY, Hanson CA, Mesa R, Bernard O, Delhommeau F, Vainchenker W, Gilliland DG, Levine RL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23:905–911CrossRefPubMedGoogle Scholar
  31. 31.
    Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, O'Keefe CL, Ganetzky R, McDevitt MA, Maciejewski JP (2009) Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 113:6403–6410CrossRefPubMedGoogle Scholar
  32. 32.
    Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, Skoda RC: Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood; online prepublished, Jan 8, 2010. doi: 10.1182/blood-2009-09-245381
  33. 33.
    Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, Heguy A, Bueso-Ramos C, Kantarjian H, Levine RL, Verstovsek S (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70:447–452CrossRefPubMedGoogle Scholar
  34. 34.
    Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S (2008) RUNX1 mutations play a major role in the progression of MDS to s-AML following MDS: a genetic and cytogenetic analysis of sequential samples. Annual Meeting of the Society of Hematology Blood 112. abstract #3634Google Scholar
  35. 35.
    Tefferi A, Levine RL, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Finke CM, Mullally A, Li CY, Pardanani A, Gilliland DG (2009) Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 23:900–904CrossRefPubMedGoogle Scholar
  36. 36.
    Andoniou CE, Thien CB, Langdon WY (1994) Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J 13:4515–4523PubMedGoogle Scholar
  37. 37.
    Savage PD, Shapiro M, Langdon WY, Geurts van Kessel AD, Seuanez HN, Akao Y, Croce C, Morse HC III, Kersey JH (1991) Relationship of the human protooncogene CBL2 on 11q23 to the t(4;11), t(11;22), and t(11;14) breakpoints. Cytogenet Cell Genet 56:112–115CrossRefPubMedGoogle Scholar
  38. 38.
    Fu JF, Hsu JJ, Tang TC, Shih LY (2003) Identification of CBL, a proto-oncogene at 11q23.3, as a novel MLL fusion partner in a patient with de novo acute myeloid leukemia. Genes Chromosomes Cancer 37:214–219CrossRefPubMedGoogle Scholar
  39. 39.
    Reindl C, Quentmeier H, Petropoulos K, Greif PA, Benthaus T, Argiropoulos B, Mellert G, Vempati S, Duyster J, Buske C, Bohlander SK, Humphries KR, Hiddemann W, Spiekermann K (2009) CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 15:2238–2247CrossRefPubMedGoogle Scholar
  40. 40.
    Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ, Marburger TB, Wen J, Perrotti D, Bloomfield CD, Whitman SP (2007) Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110:1022–1024CrossRefPubMedGoogle Scholar
  41. 41.
    Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, Kreil S, Jones A, Score J, Metzgeroth G, Oscier D, Hall A, Brandts C, Serve H, Reiter A, Chase AJ, Cross NC (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113:6182–6192CrossRefPubMedGoogle Scholar
  42. 42.
    Abbas S, Rotmans G, Lowenberg B, Valk PJ (2008) Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 93:1595–1597CrossRefPubMedGoogle Scholar
  43. 43.
    Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908CrossRefPubMedGoogle Scholar
  44. 44.
    Haferlach C, Dicker F, Kohlmann A, Schindela S, Weiss T, Kern W, Schnittger S, Haferlach T (2010) AML with CBFB-MYH11 rearrangement is characterized by RAS pathway alterations in 92% of cases and demonstrates a high frequency of NF1 deletions. Leukemia, in pressGoogle Scholar
  45. 45.
    Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J, Muramatsu H, O'Keefe C, Hsi E, Paquette RL, Kojima S, List AF, Sekeres MA, McDevitt MA, Maciejewski JP (2009) Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 27:6109–6116CrossRefPubMedGoogle Scholar
  46. 46.
    Kohlmann A, Grossmann V, Haferlach C, Kazak B, Schindela S, Klein H-U, Weiss T, Dicker F, Schnittger S, Dugas M, Kern W, Haferlach T (2009) Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 75% of chronic myelomonocytic leukemia (CMML) by detecting frequent alterations in TET2, RUNX1, CBL, and RAS. Annual Meeting of the American Society of Hematology. Blood 114. abstract #417Google Scholar
  47. 47.
    Muramatsu H, Makishima H, Jankowska AM, Cazzolli H, O'Keefe C, Yoshida N, Xu Y, Nishio N, Hama A, Yagasaki H, Takahashi Y, Kato K, Manabe A, Kojima S, Maciejewski JP. Mutations of E3 ubiquitin ligase Cbl family members but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood, online prepublished, Dec 11, 2009. doi: 10.1182/blood-2009-06-226340
  48. 48.
    Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114:1859–1863CrossRefPubMedGoogle Scholar
  49. 49.
    Levine RL, Carroll M (2009) A common genetic mechanism in malignant bone marrow diseases. N Engl J Med 360:2355–2357CrossRefPubMedGoogle Scholar
  50. 50.
    Mullighan CG (2009) TET2 mutations in myelodysplasia and myeloid malignancies. Nat Genet 41:766–767CrossRefPubMedGoogle Scholar
  51. 51.
    Mohamedali AM, Smith AE, Gaken J, Lea NC, Mian SA, Westwood NB, Strupp C, Gattermann N, Germing U, Mufti GJ (2009) Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 27:4002–4006CrossRefPubMedGoogle Scholar
  52. 52.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Lyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935CrossRefPubMedGoogle Scholar
  53. 53.
    Carbuccia N, Trouplin V, Gelsi-Boyer V, Murati A, Rocquain J, Adelaide J, Olschwang S, Xerri L, Vey N, Chaffanet M, Birnbaum D, Mozziconacci MJ. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia, online prepublished, Oct 29, 2009. doi:  10.1038/leu.2009.218
  54. 54.
    Bandi SR, Brandts C, Rensinghoff M, Grundler R, Tickenbrock L, Kohler G, Duyster J, Berdel WE, Muller-Tidow C, Serve H, Sargin B (2009) E3 ligase-defective Cbl mutants lead to a generalized mastocytosis and a myeloproliferative disease. Blood 114:14197–14208CrossRefGoogle Scholar
  55. 55.
    Tyner JW, Erickson H, Deininger MW, Willis SG, Eide CA, Levine RL, Heinrich MC, Gattermann N, Gilliland DG, Druker BJ, Loriaux MM (2009) High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood 113:1749–1755CrossRefPubMedGoogle Scholar
  56. 56.
    Loriaux MM, Levine RL, Tyner JW, Frohling S, Scholl C, Stoffregen EP, Wernig G, Erickson H, Eide CA, Berger R, Bernard OA, Griffin JD, Stone RM, Lee B, Meyerson M, Heinrich MC, Deininger MW, Gilliland DG, Druker BJ (2008) High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. Blood 111:4788–4796CrossRefPubMedGoogle Scholar
  57. 57.
    Couronne L, Lippert E, Andrieux J, Kosmider O, Radford-Weiss I, Penther D, Dastugue N, Mugneret F, Lafage M, Gachard N, Nadal N, Bernard OA, Nguyen-Khac F (2010) Analyses of TET2 mutations in post-myeloproliferative neoplasm acute myeloid leukemias. Leukemia 24:201–203CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ulrike Bacher
    • 1
  • Claudia Haferlach
    • 2
  • Susanne Schnittger
    • 2
  • Alexander Kohlmann
    • 2
  • Wolfgang Kern
    • 2
  • Torsten Haferlach
    • 2
  1. 1.Interdisciplinary Clinic for Stem Cell TransplantationUniversity Cancer Center HamburgHamburgGermany
  2. 2.MLL Munich Leukemia LaboratoryMunichGermany

Personalised recommendations