Skip to main content

Advertisement

Log in

Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Hematopoietic recovery after high-dose chemotherapy (HDC) in the treatment of hematological diseases may be slow and/or incomplete. This is generally attributed to progressive hematopoietic stem cell failure, although defective hematopoiesis may be in part due to poor stromal function. Chemotherapy is known to damage mature bone marrow stromal cells in vitro, but the extent to which marrow mesenchymal stem cells (MSCs) are damaged by HDC in vivo is largely unknown. To address this question, the phenotype and functional properties of marrow MSCs derived from untreated and chemotherapeutically treated patients with hematological malignancy were compared. This study demonstrates a significant reduction in MSC expansion and MSC CD44 expression by MSCs derived from patients receiving HDC regimens, thus implicating potential disadvantages in the use of autologous MSCs in chemotherapeutically pretreated patients for future therapeutic strategies. The clinical importance of these HDC-induced defects we have observed could be determined through prospective randomized trials of the effects of MSC cotransplantation on hematopoietic recovery in the setting of HDC with and without hematopoietic stem cell rescue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  2. Dexter TM, Spooncer E (1987) Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 3:423–441

    Article  CAS  PubMed  Google Scholar 

  3. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  CAS  PubMed  Google Scholar 

  4. Dexter TM, Spooncer E, Simmons P, Allen TD (1984) Long-term marrow culture: an overview of techniques and experience. Kroc Found Ser 18:57–96

    CAS  PubMed  Google Scholar 

  5. Banfi A, Podesta M, Fazzuoli L, Sertoli MR, Venturini M, Santini G, Cancedda R, Quarto R (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92:2419–2428

    Article  CAS  PubMed  Google Scholar 

  6. Carlo-Stella C, Tabilio A, Regazzi E, Garau D, La Tagliata R, Trasarti S, Andrizzi C, Vignetti M, Meloni G (1997) Effect of chemotherapy for acute myelogenous leukemia on hematopoietic and fibroblast marrow progenitors. Bone Marrow Transplant 20:465–471

    Article  CAS  PubMed  Google Scholar 

  7. Cohen GI, Greenberger JS, Canellos GP (1982) Effect of chemotherapy and irradiation on interactions between stromal and hemopoietic cells in vitro. Scan Electron Microsc 359–365

  8. Corazza F, Hermans C, Ferster A, Fondu P, Demulder A, Sariban E (2004) Bone marrow stroma damage induced by chemotherapy for acute lymphoblastic leukemia in children. Pediatr Res 55:152–158

    Article  PubMed  Google Scholar 

  9. Domaratskaia EI, Bueverova EI, Paiushina OD, Starostin VI (2005) Alkylating damage by dipin of hematopoietic and stromal cells of the bone marrow. Izv Akad Nauk Ser Biol 267–272.

  10. Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, Dufour C, Ferrara GB, Abbondandolo A, Dini G, Bacigalupo A, Cancedda R, Quarto R (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466

    Article  CAS  PubMed  Google Scholar 

  11. O’Flaherty E, Sparrow R, Szer J (1995) Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant 15:207–212

    PubMed  Google Scholar 

  12. Domenech J, Gihana E, Dayan A, Truglio D, Linassier C, Desbois I, Lamagnere JP, Colombat P, Binet C (1994) Haemopoiesis of transplanted patients with autologous marrows assessed by long-term marrow culture. Br J Haematol 88:488–496

    Article  CAS  PubMed  Google Scholar 

  13. Domenech J, Roingeard F, Herault O, Truglio D, Desbois I, Colombat P, Binet C (1998) Changes in the functional capacity of marrow stromal cells after autologous bone marrow transplantation. Leuk Lymphoma 29:533–546

    Article  CAS  PubMed  Google Scholar 

  14. Fried W, Chamberlin W, Kedo A, Barone J (1976) Effects of radiation on hematopoietic stroma. Exp Hematol 4:310–314

    CAS  PubMed  Google Scholar 

  15. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432

    Article  CAS  PubMed  Google Scholar 

  16. Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, Rizzoli V, Aversa F, Martelli MF, Tabilio A (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96:3637–3643

    CAS  PubMed  Google Scholar 

  17. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27:1675–1681

    Article  CAS  PubMed  Google Scholar 

  18. Fibbe WE, Noort WA, Schipper F, Willemze R (2001) Ex vivo expansion and engraftment potential of cord blood-derived CD34+ cells in NOD/SCID mice. Ann N Y Acad Sci 938:9–17

    Article  CAS  PubMed  Google Scholar 

  19. Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 27:1569–1575

    Article  CAS  PubMed  Google Scholar 

  20. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, Krause DS (2003) Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 31:413–420

    Article  CAS  PubMed  Google Scholar 

  21. in ’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 31:881–889

    Article  PubMed  Google Scholar 

  22. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    CAS  PubMed  Google Scholar 

  23. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  24. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  25. Hows JM, Bradley BA, Marsh JC, Luft T, Coutinho L, Testa NG, Dexter TM (1992) Growth of human umbilical-cord blood in long-term haemopoietic cultures. Lancet 340:73–76

    Article  CAS  PubMed  Google Scholar 

  26. Gee AP, Mansour V, Weiler M (1989) T-cell depletion of human bone marrow. J Immunogenet 16:103–115

    Article  CAS  PubMed  Google Scholar 

  27. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  28. Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N, Ogawa R, Good RA, Ikehara S (1994) Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 152:3119–3127

    CAS  PubMed  Google Scholar 

  29. Devine SM, Hoffman R (2000) Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol 7:358–363

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Law HK, Lau YL, Chan GC (2004) Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 127:326–334

    Article  CAS  PubMed  Google Scholar 

  31. Khaldoyanidi S, Sikora L, Orlovskaya I, Matrosova V, Kozlov V, Sriramarao P (2001) Correlation between nicotine-induced inhibition of hematopoiesis and decreased CD44 expression on bone marrow stromal cells. Blood 98:303–312

    Article  CAS  PubMed  Google Scholar 

  32. Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H, Herrlich P (1998) Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 102:1024–1034

    Article  CAS  PubMed  Google Scholar 

  33. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9:841–848

    Article  CAS  PubMed  Google Scholar 

  34. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

    Article  CAS  PubMed  Google Scholar 

  35. Reese JS, Koc ON, Gerson SL (1999) Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction. J Hematother Stem Cell Res 8:515–523

    Article  CAS  PubMed  Google Scholar 

  36. Muller-Sieburg CE, Deryugina E, Khaldoyanidi S, O’Rourke A (2000) Tissue- and epitope-specific mechanisms account for the diverse effects of anti-CD44 antibodies on the maintenance of primitive hematopoietic progenitors in vitro. Blood Cells Mol Dis 26:291–302

    Article  CAS  PubMed  Google Scholar 

  37. Khaldoyanidi S, Denzel A, Zoller M (1996) Requirement for CD44 in proliferation and homing of hematopoietic precursor cells. J Leukoc Biol 60:579–592

    CAS  PubMed  Google Scholar 

  38. Miyake K, Medina KL, Hayashi S, Ono S, Hamaoka T, Kincade PW (1990) Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med 171:477–488

    Article  CAS  PubMed  Google Scholar 

  39. Delfino DV, Patrene KD, DeLeo AB, DeLeo R, Herberman RB, Boggs SS (1994) Role of CD44 in the development of natural killer cells from precursors in long-term cultures of mouse bone marrow. J Immunol 152:5171–5179

    CAS  PubMed  Google Scholar 

  40. de Wynter E, Ploemacher RE (2001) Assays for the assessment of human hematopoietic stem cells. J Biol Regul Homeost Agents 15:23–27

    PubMed  Google Scholar 

  41. Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hematopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30:993–1003

    Article  CAS  PubMed  Google Scholar 

  42. Mueller LP, Luetzkendorf J, Mueller T, Reichelt K, Simon H, Schmoll HJ (2006) Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: evidence of resistance to apoptosis induction. Stem Cells 24:2753–2765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to the doctors and nurses at the Royal United Hospital, Bath, for bone marrow collections and helpful discussions and to all patients who donated marrow samples. We would also like to thank midwifes at the Central Delivery Suite, Southmead Hospital, Bristol, for cord blood collections and mothers who donated cord blood. This work was supported by a Ph.D. bursary from the University of the West of England and also in part by the funding provided by the Transplant Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kemp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, K., Morse, R., Wexler, S. et al. Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89, 701–713 (2010). https://doi.org/10.1007/s00277-009-0896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0896-2

Keywords

Navigation