Annals of Hematology

, Volume 88, Issue 11, pp 1089–1097 | Cite as

Different clinical importance of FLT3 internal tandem duplications in AML according to FAB classification: possible existence of distinct leukemogenesis involving monocyte differentiation pathway

  • Youngil Koh
  • Juwon Park
  • Kwang-Sung Ahn
  • Inho Kim
  • Soo-Mee Bang
  • Jae-Hoon Lee
  • Sung-Soo YoonEmail author
  • Dong Soon Lee
  • Young Yiul Lee
  • Seonyang Park
  • Byung-Kook Kim
Original Article


Impact of FLT3 receptor tyrosine kinase activation via internal tandem duplication (ITD) of the juxtamembrane region on outcome of acute myeloid leukemia (AML) is still controversial. Recent researches reveal a role of FLT3 in monocyte differentiation in hematopoiesis. We analyzed the clinical impact of FLT3 alterations in adult AML patients excluding acute promyelocytic leukemia (APL) who received induction chemotherapy according to morphologic classification. Retrospective review of medical records from three centers in Korea between 1997 and 2007 was performed. Polymerase chain reaction was performed on genomic DNA derived from blood samples of patients before induction chemotherapy for FLT3-ITD detection. We assessed overall survival (OS), first disease-free survival (1-DFS), and response to induction chemotherapy. One hundred eighty-four patients (median age 49.1 years, range 16.0–76.5) with AML excluding APL received induction chemotherapy from three centers. FLT3-ITD was detected in 22 patients. One hundred forty-one patients were below age 60. One hundred seventy-nine patients received induction chemotherapy with cytarabine and idarubicin (AId) regimen. One hundred nineteen patients achieved complete remission (CR) after first induction chemotherapy. FLT3-ITD was not related to achievement of CR. 1-DFS was longer in patients without FLT3-ITD (median 1-DFS 16.5 vs. 8.5 months, p = 0.025). 1-DFS was not different according to FLT3-ITD status in nonmonocyte lineage leukemia (p = 0.355), while 1-DFS was shorter in monocyte lineage leukemia for FLT3-ITD positive patients (20.9 vs. 2.4 months, p < 0.001). FLT3-ITD had no impact on OS except for monocyte lineage, where OS was significantly shorter in FLT3-ITD positive group (39.4 vs. 6.0 months, p = 0.026). Moreover FLT3-ITD was stronger prognostic factors in monocyte lineage AML than risk stratification based on cytogenetics. Status of FLT3-ITD should be analyzed differently in AML patients according to morphologic profile. FLT3-ITD is a predictive and prognostic marker only in monocyte lineage patients. This result suggests an existence of distinct subset of monocyte lineage AML with leukemogenesis involving FLT3 activating pathway.


Acute myeloid leukemia FLT3-ITD Monocyte FAB classification 



This work was supported by a grant from Seoul National University Hospital Research Fund (No. 03-2006-003-0). This work was also supported by a grant from Cancer Research institute, Seoul National University College of Medicine (No.800-20070121).


  1. 1.
    Sekeres MA, Peterson B, Dodge RK, Mayer RJ, Moore JO, Lee EJ et al (2004) Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia. Blood 103(11):4036–4042. doi: 10.1182/blood-2003-09-3118 PubMedCrossRefGoogle Scholar
  2. 2.
    Olesen LH, Aggerholm A, Andersen BL, Nyvold CG, Guldberg P, Norgaard JM et al (2005) Molecular typing of adult acute myeloid leukaemia: significance of translocations, tandem duplications, methylation, and selective gene expression profiling. Br J Haematol 131(4):457–467. doi: 10.1111/j.1365-2141.2005.05791.x PubMedCrossRefGoogle Scholar
  3. 3.
    Haferlach T, Schoch C, Loffler H, Gassmann W, Kern W, Schnittger S et al (2003) Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol 21(2):256–265. doi: 10.1200/JCO.2003.08.005 PubMedCrossRefGoogle Scholar
  4. 4.
    Small D (2006) FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program 2006:178–184. doi: 10.1182/asheducation-2006.1.178 Google Scholar
  5. 5.
    Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al (2001) Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 61(19):7233–7239PubMedGoogle Scholar
  6. 6.
    Kottaridis PD, Gale RE, Linch DC (2003) Flt3 mutations and leukaemia. Br J Haematol 122(4):523–538. doi: 10.1046/j.1365-2141.2003.04500.x PubMedCrossRefGoogle Scholar
  7. 7.
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100(1):59–66. doi: 10.1182/blood.V100.1.59 PubMedCrossRefGoogle Scholar
  8. 8.
    Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665. doi: 10.1038/nrc1169 PubMedCrossRefGoogle Scholar
  9. 9.
    Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98(6):1752–1759. doi: 10.1182/blood.V98.6.1752 PubMedCrossRefGoogle Scholar
  10. 10.
    Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y et al (1993) Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 82(4):1110–1119PubMedGoogle Scholar
  11. 11.
    Zeigler FC, Bennett BD, Jordan CT, Spencer SD, Baumhueter S, Carroll KJ et al (1994) Cellular and molecular characterization of the role of the flk-2/flt-3 receptor tyrosine kinase in hematopoietic stem cells. Blood 84(8):2422–2430PubMedGoogle Scholar
  12. 12.
    McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489–3497PubMedGoogle Scholar
  13. 13.
    Li L, Piloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F et al (2008) Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood 111(7):3849–3858. doi: 10.1182/blood-2007-08-109942 PubMedCrossRefGoogle Scholar
  14. 14.
    Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al (2005) Identification of Flt3 + lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121(2):295–306. doi: 10.1016/j.cell.2005.02.013 PubMedCrossRefGoogle Scholar
  15. 15.
    Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12):4326–4335. doi: 10.1182/blood.V99.12.4326 PubMedCrossRefGoogle Scholar
  16. 16.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103(4):620–625Google Scholar
  17. 17.
    Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ et al (1999) A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol 107(1):69–79. doi: 10.1046/j.1365-2141.1999.01684.x Google Scholar
  18. 18.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96(13):4075–4083PubMedGoogle Scholar
  19. 19.
    Vance GH, Kim H, Hicks GA, Cherry AM, Higgins R, Hulshizer RL et al (2007) Utility of interphase FISH to stratify patients into cytogenetic risk categories at diagnosis of AML in an Eastern Cooperative Oncology Group (ECOG) clinical trial (E1900). Leuk Res 31(5):605–609. doi: 10.1016/j.leukres.2006.07.026 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X et al (2008) Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100(3):184–198. doi: 10.1093/jnci/djm328 PubMedCrossRefGoogle Scholar
  21. 21.
    Bullinger L, Dohner K, Kranz R, Stirner C, Frohling S, Scholl C, et al. A FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML. Blood. 2008 Feb 28.Google Scholar
  22. 22.
    Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P et al (2008) Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 111(6):3173–3182. doi: 10.1182/blood-2007-05-092510 PubMedCrossRefGoogle Scholar
  23. 23.
    Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK et al (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5):2776–2784. doi: 10.1182/blood-2007-08-109090 PubMedCrossRefGoogle Scholar
  24. 24.
    Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G (2006) BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol 24(5):790–797. doi: 10.1200/JCO.2005.01.6253 PubMedCrossRefGoogle Scholar
  25. 25.
    Yang X, Liu L, Sternberg D, Tang L, Galinsky I, DeAngelo D et al (2005) The FLT3 Internal tandem duplication mutation prevents apoptosis in interleukin-3-deprived BaF3 cells due to protein kinase A and ribosomal S6 kinase 1-mediated BAD phosphorylation at serine 112. Cancer Res 65(16):7338–7347. doi: 10.1158/0008-5472.CAN-04-2263 PubMedCrossRefGoogle Scholar
  26. 26.
    Mead AJ, Gale RE, Kottaridis PD, Matsuda S, Khwaja A, Linch DC (2008) Acute myeloid leukaemia blast cells with a tyrosine kinase domain mutation of FLT3 are less sensitive to lestaurtinib than those with a FLT3 internal tandem duplication. Br J Haematol 141(4):454–460. doi: 10.1111/j.1365-2141.2008.07025.x PubMedCrossRefGoogle Scholar
  27. 27.
    Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D et al (2008) Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood 111(7):3723–3734. doi: 10.1182/blood-2007-09-114454 PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8):2434–2439. doi: 10.1182/blood.V97.8.2434 PubMedCrossRefGoogle Scholar
  29. 29.
    Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D et al (2006) Clinical implications of FLT3 mutations in pediatric AML. Blood 108(12):3654–3661. doi: 10.1182/blood-2006-03-009233 PubMedCrossRefGoogle Scholar
  30. 30.
    Kang HJ, Hong SH, Kim IH, Park BK, Han KS, Cho HI et al (2005) Prognostic significance of FLT3 mutations in pediatric non-promyelocytic acute myeloid leukemia. Leuk Res 29(6):617–623. doi: 10.1016/j.leukres.2004.11.006 PubMedCrossRefGoogle Scholar
  31. 31.
    Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al (2003) Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101(8):3164–3173. doi: 10.1182/blood-2002-06-1677 PubMedCrossRefGoogle Scholar
  32. 32.
    Al Shaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K et al (2008) Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol 141(4):483–493. doi: 10.1111/j.1365-2141.2008.07053.x PubMedCrossRefGoogle Scholar
  33. 33.
    Boissel N, Renneville A, Biggio V, Philippe N, Thomas X, Cayuela JM et al (2005) Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 106(10):3618–3620. doi: 10.1182/blood-2005-05-2174 PubMedCrossRefGoogle Scholar
  34. 34.
    Gale RE, Hills R, Kottaridis PD, Srirangan S, Wheatley K, Burnett AK et al (2005) No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 106(10):3658–3665. doi: 10.1182/blood-2005-03-1323 PubMedCrossRefGoogle Scholar
  35. 35.
    Riccioni R, Senese M, Diverio D, Riti V, Buffolino S, Mariani G et al (2007) M4 and M5 acute myeloid leukaemias display a high sensitivity to Bortezomib-mediated apoptosis. Br J Haematol 139(2):194–205. doi: 10.1111/j.1365-2141.2007.06757.x PubMedCrossRefGoogle Scholar
  36. 36.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266. doi: 10.1056/NEJMoa041974 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Youngil Koh
    • 1
  • Juwon Park
    • 2
  • Kwang-Sung Ahn
    • 2
  • Inho Kim
    • 1
    • 2
    • 3
  • Soo-Mee Bang
    • 4
  • Jae-Hoon Lee
    • 5
  • Sung-Soo Yoon
    • 1
    • 2
    • 3
    • 4
    Email author
  • Dong Soon Lee
    • 6
  • Young Yiul Lee
    • 7
  • Seonyang Park
    • 1
    • 2
    • 3
  • Byung-Kook Kim
    • 1
    • 2
    • 3
  1. 1.Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
  2. 2.Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
  3. 3.Cancer Research InstituteSeoul National University HospitalSeoulRepublic of Korea
  4. 4.Department of Internal MedicineSeoul National University Bundang HospitalSeoulRepublic of Korea
  5. 5.Department of Internal MedicineGachon University College of Medicine Gil HospitalIn-chonKorea
  6. 6.Department of Clinical PathologySeoul National University HospitalSeoulRepublic of Korea
  7. 7.Department of Internal MedicineHanyang University HospitalSeoulRepublic of Korea

Personalised recommendations