Annals of Hematology

, Volume 88, Issue 9, pp 847–853 | Cite as

Cellular and humoral immune alterations in thymectomized patients for thymoma

  • Maurizio Lalle
  • Mauro Minellli
  • Paola Tarantini
  • Mirella Marino
  • Virna Cerasoli
  • Francesco Facciolo
  • Cesare Iani
  • Mauro Antimi
Original Article


The aim of this study was to analyze the impact of thymectomy on kinetics of the immune reconstitution in thymoma patients. Nine consecutive patients with completely resected thymoma were enrolled. Immunophenotype analysis (total lymphocytes, CD3, CD4, CD8, CD19, NK subsets) and detection of autoantibodies at 6, 12, 18, and 24 months after thymectomy were planned. A prolonged inversion of CD4/CD8 ratio was present, due to a diminished number of CD4+ cells; CD8+ cell numbers remaining constantly normal at different time points; CD19+ cells remained for a long time understatement, achieving almost normal levels at 24 months; and NK cells always showed a normal amount. Autoantibodies against the muscle acetylcholine receptor were detected in four patients (44.4%) at the time of diagnosis, while antinuclear antibody were detected in eight patients (88.8%) at different time points during postthymectomy. A high incidence of multiple primary neoplasms was observed (66.6% of cases). Our study showed that cellular and humoral immune alterations are a common sequelae of postthymectomy. Further studies, a longer surveillance and a cooperative approach, due to the rarity of the disease, are necessary to define eventual implications of immune alterations on patient’s outcome.


Thymoma Thymectomy Immunology Antinuclear antibody Immunosuppression 



We are indebted with Prof. Maria Grossi for revising the manuscript


  1. 1.
    Poulin JF, Viswanathan MN, Harris JM, Komanduri KV, Wieder E, Ringuette N et al (1999) Direct evidence for thymic function in adult human. J Exp Med 190:479–486 doi: 10.1084/jem.190.4.479 PubMedCrossRefGoogle Scholar
  2. 2.
    Haynes BF, Hale LP (1998) The human thymus. A chimeric organ comprised of central and peripheral lymphoid components. Immunol Res 18:175–192 doi: 10.1007/BF02788778 PubMedCrossRefGoogle Scholar
  3. 3.
    Douek DC, McFarland RD, Kaiser PH, Gage EA, Massey JM, Haynes BF et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695 doi: 10.1038/25374 PubMedCrossRefGoogle Scholar
  4. 4.
    Hallgren HM, Buckley CE 3rd, Gilbertsen VA, Yunis EJ (1973) Lymphocyte phytohemagglutinin responsiveness, immunoglobulins and autoantibodies in aging humans. J Immunol 111:1101–1107PubMedGoogle Scholar
  5. 5.
    Hara H, Negoro S, Miyata S, Saiki O, Yoshizaki K, Tanaka T et al (1987) Age-associated changes in proliferative and differentiative response of human B cells and production of T cell-derived factors regulating B cell functions. Mech Ageing Dev 38:245–258 doi: 10.1016/0047-6374(87)90093-5 PubMedCrossRefGoogle Scholar
  6. 6.
    Bernstein E, Kaye D, Abrutyn E, Gross P, Dorfman M, Murasko DM (1999) Immune response to influenza vaccination in a large healthy elderly population. Vaccine 17:82–94 doi: 10.1016/S0264-410X(98)00117-0 PubMedCrossRefGoogle Scholar
  7. 7.
    Negoro S, Hara H, Miyata S, Saiki O, Tanaka T, Yoshizaki K et al (1987) Age-related changes of the function of T cell subsets: predominant defect of the proliferative response in CD8 positive T cell subset in aged persons. Mech Ageing Dev 39:263–279 doi: 10.1016/0047-6374(87)90066-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Hoffacker V, Schultz A, Tiesinga JJ, Gold R, Schalke B, Kiefer R et al (2000) Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease. Blood 96:3872–3879PubMedGoogle Scholar
  9. 9.
    Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332:143–149 doi: 10.1056/NEJM199501193320303 PubMedCrossRefGoogle Scholar
  10. 10.
    Hakim FT, Cepeda R, Kaimei S, Mackall MC, McAtee N, Zujewski J et al (1997) Constraints on CD4 recovery post chemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90:3789–3798PubMedGoogle Scholar
  11. 11.
    Mackall CL, Fleischer TA, Brown MR, Magrath IT, Shad AT, Horowitz ME et al (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84:2221–2228PubMedGoogle Scholar
  12. 12.
    Roberts MM, To LB, Gillis D, Mundy J, Rawling C, Ng K et al (1993) Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 12:469–475PubMedGoogle Scholar
  13. 13.
    Thomas JA, Sloane JP, Imrie SF, Ritter MA, Schuurman HJ, Huber J (1986) Immunohistology of the thymus in bone marrow transplant recipients. Am J Pathol 122:531–540PubMedGoogle Scholar
  14. 14.
    Müller-Hermelink HK, Sale GE, Borisch B, Storb R (1987) Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients. Am J Pathol 29:242–256Google Scholar
  15. 15.
    Mackall CL, Stein D, Fleisher TA, Brown MR, Hakim FT, Bare CV et al (2000) Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood 96:754–762PubMedGoogle Scholar
  16. 16.
    Lalle M, De Rosa L, Pandolfi A, Amodeo R, De Blasio A, Montuoro A et al (2002) Immune recovery in breast cancer patients after tandem high-dose chemotherapy rescued by selected CD34+ cells. J Hematother Stem Cell Res 11:991–994 doi: 10.1089/152581602321080673 PubMedCrossRefGoogle Scholar
  17. 17.
    Guillaume T, Rubinstein DB, Symann M (1998) Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 92:1471–1490PubMedGoogle Scholar
  18. 18.
    Heitger A, Neu N, Kern H, Panzer-Grumayer ER, Greinix H, Nachbaur D et al (1997) Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 90:850–857PubMedGoogle Scholar
  19. 19.
    Seddon B, Mason D (2000) The third function of the thymus. Immunol Today 21:95–99 doi: 10.1016/S0167-5699(99)01559-5 PubMedCrossRefGoogle Scholar
  20. 20.
    Guyomard S, Salles G, Coudurier M, Rousset H, Coiffier B, Bienvenu J et al (2003) Prevalence and pattern of antinuclear autoantibodies in 347 patients with non-Hodgkin’s lymphoma. Br J Haematol 123:90–99 doi: 10.1046/j.1365-2141.2003.04587.x PubMedCrossRefGoogle Scholar
  21. 21.
    Armas JB, Dantas J, Mendonca D, Farto R, Ribeiro M, Herrero-Beaumont G et al (2000) Anticardiolipin and antinuclear antibodies in cancer patients—a case control study. Clin Exp Rheumatol 18:227–232PubMedGoogle Scholar
  22. 22.
    Guy-Grand D, Azogui O, Celli S, Darche S, Nussenzweig MC, Kourilsky P et al (2003) Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 197:333–341 doi: 10.1084/jem.20021639 PubMedCrossRefGoogle Scholar
  23. 23.
    Rocha B (2007) The extrathymic T-cell differentiation in the murine gut. Immunol Rev 215:166–177 doi: 10.1111/j.1600-065X.2006.00467.x PubMedCrossRefGoogle Scholar
  24. 24.
    Mackall CL, Granger L, Sheard MA, Cepeda R, Gress RE (1993) T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 82:2585–2594PubMedGoogle Scholar
  25. 25.
    Spitz H, Lanier LL, Phillips JH (1995) Development of human T and natural killer cells. Blood 85:2654–2670Google Scholar
  26. 26.
    Miller JS, Verfaillie C, McGlave PM (1992) The generation of human natural killer cells from CD34+ /DR− primitive progenitors in the long-term bone marrow culture. Blood 80:2182–2187PubMedGoogle Scholar
  27. 27.
    Lotzova E, Savary C, Champlin RE (1993) Genesis of human natural killer cells from primitive CD34+CD33− bone marrow progenitors. J Immunol 150:5263–5269PubMedGoogle Scholar
  28. 28.
    Okumura M, Ohta M, Tateyama H, Nakagawa K, Matsumura A, Maeda H et al (2002) The World Health Organization histologic classification system reflects the oncologic behavior of thymoma: a clinical study of 273 patients. Cancer 94:624–632 doi: 10.1002/cncr.10226 PubMedCrossRefGoogle Scholar
  29. 29.
    Pan CC, Chen PC, Wang LS, Chi KH, Chiang H (2001) Thymoma is associated with an increased risk of second malignancy. Cancer 92:2406–2411. doi: 10.1002/1097-0142(20011101)92:9<2406::AID-CNCR1589>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  30. 30.
    Engels EA, Pfeiffer RM (2003) Malignant thymoma in the United States: demographic patterns in incidence and associations with subsequent malignancies. Int J Cancer 105:546–551 doi: 10.1002/ijc.11099 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Maurizio Lalle
    • 1
  • Mauro Minellli
    • 1
  • Paola Tarantini
    • 1
  • Mirella Marino
    • 2
  • Virna Cerasoli
    • 3
  • Francesco Facciolo
    • 3
  • Cesare Iani
    • 4
  • Mauro Antimi
    • 1
  1. 1.U.O.C. Oncologia MedicaOspedale S. EugenioRomeItaly
  2. 2.S.C. Anatomia ed Iistologia PatologicaIstituto Regina ElenaRomeItaly
  3. 3.S.C. Chirurgia ToracicaIstituto Regina ElenaRomeItaly
  4. 4.U.O.C. NeurologiaOspedale S. EugenioRomeItaly

Personalised recommendations