Annals of Hematology

, Volume 88, Issue 8, pp 743–752 | Cite as

Casticin induces leukemic cell death through apoptosis and mitotic catastrophe

  • Jia-Kun Shen
  • Hua-ping Du
  • Min Yang
  • Yun-Gui Wang
  • Jie Jin
Original Article


Casticin, a component from Vitex rotundifolia, widely used as an anti-inflammatory agent in Chinese traditional medicine, was reported to have anti-tumor activities. This study aims to examine the anti-leukemic activity of casticin on leukemia cells and its molecular mechanism. Cell viability was measured by MTT method; apoptosis and cell cycle arrest were determined by flow cytometry, AV-PI assay, and DNA fragmentation assay. Western blot were performed to measure the protein expression level. The cell morphology alteration was detected with immunofluorescent analysis and DAPI nuclear staining. Our results showed that the proliferation of leukemia cells, including K562, Kasumi-1, and HL-60, were inhibited by casticin in a time- and dose-dependent manner. The IC50, determined after 48 h incubation, was 5.95 μM, 4.82 μM, and 15.56 μM for K562, HL-60, and Kasumi-1, respectively. The cell cycle analysis demonstrated casticin treatment resulted in a significant G2/M accumulation, concomitant with upregulation of P21waf1 and P27kip1. The percentage of cells in G2/M increased with time of exposure and reached to its climax (75.3%) at 12 h after casticin treatment, and subsequently declined to 27% at 48 h. We found that casticin treatment induced remarkable apoptosis, evidenced by increased percentage of AV-positive PI-negative cells as well as the cleavage of PARP and caspase 3. In addition, DNA fragmentation assay showed the typical apoptotic DNA ladder in casticin-treated K562 cells. Mitotic catastrophe and decreased polymeric tubulin can also be observed in casticin-treated K562 cells. In addition, we found that PI3K/AKT pathway was activated; Ly294002, a PI3K/AKT specific inhibitor, can enhance the anti-leukemic effect of casticin. Taken together, these results demonstrated that casticin induced leukemic cell death via apoptosis and mitotic catastrophe, and could synergize with PI3K/AKT inhibitor, suggesting that casticin could be a promising therapeutic agent against leukemia.


Casticin Apoptosis Mitotic catastrophe Leukemia 


  1. 1.
    Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221. doi: 10.1016/j.ymeth.2007.12.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15:3–12. doi: 10.1038/sj.cdd.4402269 PubMedCrossRefGoogle Scholar
  3. 3.
    Jackson JR, Patrick DR, Dar MM, Huang PS (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7:107–117. doi: 10.1038/nrc2049 PubMedCrossRefGoogle Scholar
  4. 4.
    Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162PubMedCrossRefGoogle Scholar
  5. 5.
    Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837. doi: 10.1038/sj.onc.1207528 PubMedCrossRefGoogle Scholar
  6. 6.
    Mansilla S, Priebe W, Portugal J (2006) Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5:53–60PubMedGoogle Scholar
  7. 7.
    Vitale I, Antoccia A, Cenciarelli C, Crateri P, Meschini S, Arancia G, Pisano C, Tanzarella C (2007) Combretastatin CA-4 and combretastatin derivative induce mitotic catastrophe dependent on spindle checkpoint and caspase-3 activation in non-small cell lung cancer cells. Apoptosis 12:155–166. doi: 10.1007/s10495-006-0491-0 PubMedCrossRefGoogle Scholar
  8. 8.
    Lundberg AS, Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer 35:531–539. doi: 10.1016/S0959-8049(99)00292-0 PubMedCrossRefGoogle Scholar
  9. 9.
    Luch A (2002) Cell cycle control and cell division: implications for chemically induced carcinogenesis. ChemBioChem 3:506–516. doi:10.1002/1439-7633(20020603)3:6<506::AID-CBIC506>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  10. 10.
    Collins I, Garrett MD (2005) Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5:366–373. doi: 10.1016/j.coph.2005.04.009 PubMedCrossRefGoogle Scholar
  11. 11.
    Lee MH, Yang HY (2001) Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci 58:1907–1922. doi: 10.1007/PL00000826 PubMedCrossRefGoogle Scholar
  12. 12.
    Lin S, Zhang H, Han T, Wu JZ, Rahman K, Qin LP (2007) In vivo effect of casticin on acute inflammation. Zhong Xi Yi Jie He Xue Bao 5:573–576. doi: 10.3736/jcim20070520 PubMedCrossRefGoogle Scholar
  13. 13.
    Haidara K, Zamir L, Shi QW, Batist G (2006) The flavonoid casticin has multiple mechanisms of tumor cytotoxicity action. Cancer Lett 242:180–190. doi: 10.1016/j.canlet.2005.11.017 PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayakawa J, Sato-Nishimori F, Moriyasu M, Matsukawa Y (2004) G2-M arrest and antimitotic activity mediated by casticin, a flavonoid isolated from Viticis Fructus (Vitex rotundifolia Linne fil.). Cancer Lett 208:59–64. doi: 10.1016/j.canlet.2004.01.012 PubMedCrossRefGoogle Scholar
  15. 15.
    Wang HY, Cai B, Cui CB, Zhang DY, Yang BF (2005) Vitexicarpin, a flavonoid from Vitex trifolia L., induces apoptosis in K562 cells via mitochondria-controlled apoptotic pathway. Yao Xue Xue Bao 40:27–31PubMedGoogle Scholar
  16. 16.
    Collins JA, Schandi CA, Young KK, Vesely J, Willingham MC (1997) Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 45:923–934PubMedGoogle Scholar
  17. 17.
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331. doi: 10.1126/science.270.5240.1326 PubMedCrossRefGoogle Scholar
  18. 18.
    Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11:701–713. doi: 10.1101/gad.11.6.701 PubMedCrossRefGoogle Scholar
  19. 19.
    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51. doi: 10.1016/0022-1759(95)00072-I PubMedCrossRefGoogle Scholar
  20. 20.
    Bacso Z, Everson RB, Eliason JF (2000) The DNA of annexin V-binding apoptotic cells is highly fragmented. Cancer Res 60:4623–4628PubMedGoogle Scholar
  21. 21.
    Ngan CY, Yamamoto H, Takagi A, Fujie Y, Takemasa I, Ikeda M, Takahashi-Yanaga F, Sasaguri T, Sekimoto M, Matsuura N, Monden M (2008) Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells. Cancer Sci 99:129–139PubMedGoogle Scholar
  22. 22.
    Park SS, Kim MA, Eom YW, Choi KS (2007) Bcl-xL blocks high dose doxorubicin-induced apoptosis but not low dose doxorubicin-induced cell death through mitotic catastrophe. Biochem Biophys Res Commun 363:1044–1049. doi: 10.1016/j.bbrc.2007.09.037 PubMedCrossRefGoogle Scholar
  23. 23.
    Strauss SJ, Higginbottom K, Juliger S, Maharaj L, Allen P, Schenkein D, Lister TA, Joel SP (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67:2783–2790. doi: 10.1158/0008-5472.CAN-06-3254 PubMedCrossRefGoogle Scholar
  24. 24.
    Lock RB, Stribinskiene L (1996) Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 56:4006–4012PubMedGoogle Scholar
  25. 25.
    Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, Horne D, Feunteun J, Lenoir G, Medema R, Vainchenker W, Kroemer G (2004) Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23:4362–4370. doi: 10.1038/sj.onc.1207572 PubMedCrossRefGoogle Scholar
  26. 26.
    Prinz H (2002) Recent advances in the field of tubulin polymerization inhibitors. Expert Rev Anticancer Ther 2:695–708. doi: 10.1586/14737140.2.6.695 PubMedCrossRefGoogle Scholar
  27. 27.
    Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203. doi: 10.1038/34465 PubMedCrossRefGoogle Scholar
  28. 28.
    Beutler JA, Hamel E, Vlietinck AJ, Haemers A, Rajan P, Roitman JN, Cardellina JH 2nd, Boyd MR (1998) Structure–activity requirements for flavone cytotoxicity and binding to tubulin. J Med Chem 41:2333–2338. doi: 10.1021/jm970842h PubMedCrossRefGoogle Scholar
  29. 29.
    Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8:187–198. doi: 10.2174/156800908784293659 PubMedCrossRefGoogle Scholar
  30. 30.
    Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM, Evangelisti C, Ottaviani E, Martinelli G, Testoni N, McCubrey JA, Martelli AM (2008) Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 22:147–160. doi: 10.1038/sj.leu.2404980 PubMedCrossRefGoogle Scholar
  31. 31.
    Loges S, Tinnefeld H, Metzner A, Jucker M, Butzal M, Bruweleit M, Fischer U, Draab E, Schuch G, O'-Farrel AM, Hossfeld DK, Bokemeyer C, Fiedler W (2006) Downregulation of VEGF-A, STAT5 and AKT in acute myeloid leukemia blasts of patients treated with SU5416. Leuk Lymphoma 47:2601–2609. doi: 10.1080/10428190600948253 PubMedCrossRefGoogle Scholar
  32. 32.
    Lee SR, Park JH, Park EK, Chung CH, Kang SS, Bang OS (2005) Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. J Cell Physiol 205:270–277. doi: 10.1002/jcp.20395 PubMedCrossRefGoogle Scholar
  33. 33.
    Moon DO, Kim MO, Choi YH, Kim GY (2008) beta-Sitosterol induces G(2)/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett 264:181–191. doi: 10.1016/j.canlet.2008.01.032 PubMedCrossRefGoogle Scholar
  34. 34.
    Cassinelli G, Lanzi C, Supino R, Pratesi G, Zuco V, Laccabue D, Cuccuru G, Bombardelli E, Zunino F (2002) Cellular bases of the antitumor activity of the novel taxane IDN 5109 (BAY59-8862) on hormone-refractory prostate cancer. Clin Cancer Res 8:2647–2654PubMedGoogle Scholar
  35. 35.
    Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, Favier L, Ghiringhelli F, Kroemer G, Solary E, Martin F, Chauffert B (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32:1031–1043PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jia-Kun Shen
    • 1
  • Hua-ping Du
    • 2
  • Min Yang
    • 1
  • Yun-Gui Wang
    • 3
  • Jie Jin
    • 1
  1. 1.Department of Hematology, Institute of Hematology, the First Affiliated HospitalZhejiang University, School of MedicineZhejiangPeople’s Republic of China
  2. 2.Department of Hematology, Sir Run Run Shaw HospitalZhejiang University, School of MedicineZhejiangPeople’s Republic of China
  3. 3.Institute of Hematology, the First Affiliated HospitalZhejiang University, School of MedicineZhejiangPeople’s Republic of China

Personalised recommendations