Annals of Hematology

, 88:193 | Cite as

Intrathecal chemotherapy for hematologic malignancies: drugs and toxicities

  • Yok-Lam Kwong
  • Dominic Y. M. Yeung
  • Joyce C. W. Chan
Review Article


Intrathecal (IT) chemotherapy is an important component of the prophylaxis or treatment of hematologic malignancies in the central nervous system (CNS), especially in patients with acute lymphoblastic leukemia and aggressive lymphomas. Different regimens of IT chemotherapies have been formulated, often in conjunction with systemic high-dose chemotherapy leading to penetration of the drugs into the cerebrospinal fluid (CSF). The three commonest IT drugs are methotrexate, cytosine arabinoside (Ara-C), and corticosteroids. The CSF half-lives of methotrexate and Ara-C are much prolonged, a factor to be considered if these drugs are also administered systemically in high doses. Neurotoxicities attributed to IT chemotherapy have been reported, including spinal cord lesions, seizures, and encephalopathy. Spinal cord lesions, manifesting as tetraplegia, paraplegia, and cauda equina syndrome, are the commonest neurotoxicity. It is mostly related to combined IT methotrexate and Ara-C, or Ara-C as the sole IT agent when given at high doses or as a slow-release preparation. Cord lesions rarely recover and patients are left with motor deficits, bowel and urinary disabilities. Seizures and encephalopathy are reported in relatively fewer patients, with variable manifestations and prognosis. Knowledge of the pharmacokinetics, dosing schedules and potential toxicities of IT chemotherapeutic drugs is important in the design of CNS prophylaxis and treatment in hematologic malignancies.


Intrathecal chemotherapy Methotrexate Cytosine arabinoside Corticosteroids Cord lesion 


  1. 1.
    Pui CH, Howard SC (2008) Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 9:257–268 doi: 10.1016/S1470-2045(08)70070-6 PubMedCrossRefGoogle Scholar
  2. 2.
    Cheung CW, Burton C, Smith P, Linch DC, Hoskin PJ, Ardeshna KM (2005) Central nervous system chemoprophylaxis in non-Hodgkin lymphoma: current practice in the UK. Br J Haematol 131:193–200 doi: 10.1111/j.1365-2141.2005.05756.x PubMedCrossRefGoogle Scholar
  3. 3.
    Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305 doi: 10.1200/JCO.2006.09.9861 PubMedCrossRefGoogle Scholar
  4. 4.
    Slevin ML, Piall EM, Aherne GW, Harvey VJ, Johnston A, Lister TA (1983) Effect of dose and schedule on pharmacokinetics of high-dose cytosine arabinoside in plasma and cerebrospinal fluid. J Clin Oncol 1:546–551PubMedGoogle Scholar
  5. 5.
    Lopez JA, Nassif E, Vannicola P, Krikorian JG, Agarwal RP (1985) Central nervous system pharmacokinetics of high-dose cytosine arabinoside. J Neurooncol 3:119–124 doi: 10.1007/BF02228887 PubMedCrossRefGoogle Scholar
  6. 6.
    DeAngelis LM, Kreis W, Chan K, Dantis E, Akerman S (1992) Pharmacokinetics of ara-C and ara-U in plasma and CSF after high-dose administration of cytosine arabinoside. Cancer Chemother Pharmacol 29:173–177 doi: 10.1007/BF00686248 PubMedCrossRefGoogle Scholar
  7. 7.
    Sutoh H, Yamauchi T, Gotoh N, Sugiyama M, Ueda T (2003) Pharmacological study of modified intermediate-dose cytarabine therapy in patients with acute myeloid leukemia. Anticancer Res 23:5037–5042PubMedGoogle Scholar
  8. 8.
    Millot F, Rubie H, Mazingue F, Mechinaud F, Thyss A (1994) Cerebrospinal fluid drug levels of leukemic children receiving intravenous 5 g/m2 methotrexate. Leuk Lymphoma 14:141–144 doi: 10.3109/10428199409049660 PubMedCrossRefGoogle Scholar
  9. 9.
    Ettinger LJ, Chervinsky DS, Freeman AI, Creaven PJ (1982) Pharmacokinetics of methotrexate following intravenous and intraventricular administration in acute lymphocytic leukemia and non-Hodgkin’s lymphoma. Cancer 50:1676–1682 doi: 10.1002/1097-0142(19821101)50:9<1676::AID-CNCR2820500903>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  10. 10.
    Lippens RJ, Winograd B (1988) Methotrexate concentration levels in the cerebrospinal fluid during high-dose methotrexate infusions: an unreliable prediction. Pediatr Hematol Oncol 5:115–124 doi: 10.3109/08880018809031261 PubMedCrossRefGoogle Scholar
  11. 11.
    Tetef ML, Margolin KA, Doroshow JH, Akman S, Leong LA, Morgan RJ Jr, Raschko JW, Slatkin N, Somlo G, Longmate JA, Carroll MI, Newman EM (2000) Pharmacokinetics and toxicity of high-dose intravenous methotrexate in the treatment of leptomeningeal carcinomatosis. Cancer Chemother Pharmacol 46:19–26 doi: 10.1007/s002800000118 PubMedCrossRefGoogle Scholar
  12. 12.
    Zylber-Katz E, Gomori JM, Schwartz A, Lossos A, Bokstein F, Siegal T (2000) Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood–brain barrier disruption in patients with brain lymphoma. Clin Pharmacol Ther 67:631–641 doi: 10.1067/mcp.2000.106932 PubMedCrossRefGoogle Scholar
  13. 13.
    Zucchetti M, Rossi C, Knerich R, Donelli MG, Butti G, Silvani V, Gaetani P, D’Incalci M (1991) Concentrations of VP16 and VM26 in human brain tumors. Ann Oncol 2:63–66PubMedGoogle Scholar
  14. 14.
    Relling MV, Mahmoud HH, Pui CH, Sandlund JT, Rivera GK, Ribeiro RC, Crist WM, Evans WE (1996) Etoposide achieves potentially cytotoxic concentrations in CSF of children with acute lymphoblastic leukemia. J Clin Oncol 14:399–404PubMedGoogle Scholar
  15. 15.
    Reid JM, Pendergrass TW, Krailo MD, Hammond GD, Ames MM (1990) Plasma pharmacokinetics and cerebrospinal fluid concentrations of idarubicin and idarubicinol in pediatric leukemia patients: a Children’s Cancer Study Group report. Cancer Res 50:6525–6528PubMedGoogle Scholar
  16. 16.
    Yule SM, Price L, Pearson AD, Boddy AV (1997) Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res 3:1985–1992PubMedGoogle Scholar
  17. 17.
    Vassal G, Gouyette A, Hartmann O, Pico JL, Lemerle J (1989) Pharmacokinetics of high-dose busulfan in children. Cancer Chemother Pharmacol 24:386–390 doi: 10.1007/BF00257448 PubMedCrossRefGoogle Scholar
  18. 18.
    Kellie SJ, Barbaric D, Koopmans P, Earl J, Carr DJ, de Graaf SS (2002) Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: a surrogate marker of brain penetration. Cancer 94:1815–1820 doi: 10.1002/cncr.10397 PubMedCrossRefGoogle Scholar
  19. 19.
    Au WY, Tam S, Fong BM, Kwong YL (2008) Determinants of cerebrospinal fluid arsenic concentration in patients with acute promyelocytic leukemia on oral arsenic trioxide therapy. Blood 112:3587–3590PubMedCrossRefGoogle Scholar
  20. 20.
    Omura GA, Moffitt S, Vogler WR, Salter MM (1980) Combination chemotherapy of adult acute lymphoblastic leukemia with randomized central nervous system prophylaxis. Blood 55:199–204PubMedGoogle Scholar
  21. 21.
    Larson RA, Dodge RK, Burns CP, Lee EJ, Stone RM, Schulman P, Duggan D, Davey FR, Sobol RE, Frankel SR, Hooberman AL, Westbrook CA, Arthur DC, George SL, Bloomfield CD, Schiffer CA (1995) A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood 85:2025–2037PubMedGoogle Scholar
  22. 22.
    Aur RJ, Simone J, Hustu HO, Walters T, Borella L, Pratt C, Pinkel D (1971) Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood 37:272–281PubMedGoogle Scholar
  23. 23.
    Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, Giles FJ, Verstovsek S, Wierda WG, Pierce SA, Shan J, Brandt M, Hagemeister FB, Keating MJ, Cabanillas F, Kantarjian H (2006) Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 106:1569–1580 doi: 10.1002/cncr.21776 PubMedCrossRefGoogle Scholar
  24. 24.
    de Botton S, Sanz MA, Chevret S, Dombret H, Martin G, Thomas X, Mediavilla JD, Recher C, Ades L, Quesnel B, Brault P, Fey M, Wandt H, Machover D, Guerci A, Maloisel F, Stoppa AM, Rayon C, Ribera JM, Chomienne C, Degos L, Fenaux P, European APL Group; PETHEMA Group (2006) Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia 20:35–41 doi: 10.1038/sj.leu.2404006 PubMedCrossRefGoogle Scholar
  25. 25.
    Hill QA, Owen RG (2006) CNS prophylaxis in lymphoma: who to target and what therapy to use. Blood Rev 20:319–332 doi: 10.1016/j.blre.2006.02.001 PubMedCrossRefGoogle Scholar
  26. 26.
    Waber DP, Turek J, Catania L, Stevenson K, Robaey P, Romero I, Adams H, Alyman C, Jandet-Brunet C, Neuberg DS, Sallan SE, Silverman LB (2007) Neuropsychological outcomes from a randomized trial of triple intrathecal chemotherapy compared with 18 Gy cranial radiation as CNS treatment in acute lymphoblastic leukemia: findings from Dana-Farber Cancer Institute ALL Consortium Protocol 95-01. J Clin Oncol 25:4914–4921 doi: 10.1200/JCO.2007.10.8464 PubMedCrossRefGoogle Scholar
  27. 27.
    Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, Pierce S, Huh Y, Andreeff M, Koller C, Ha CS, Keating MJ, Murphy S, Freireich EJ (2000) Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol 18:547–561PubMedGoogle Scholar
  28. 28.
    Harms DO, Göbel U, Spaar HJ, Graubner UB, Jorch N, Gutjahr P, Janka-Schaub GE, COALL Study Group (2003) Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood 102:2736–2740 doi: 10.1182/blood-2002-08-2372 PubMedCrossRefGoogle Scholar
  29. 29.
    Moghrabi A, Levy DE, Asselin B, Barr R, Clavell L, Hurwitz C, Samson Y, Schorin M, Dalton VK, Lipshultz SE, Neuberg DS, Gelber RD, Cohen HJ, Sallan SE, Silverman LB (2007) Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 109:896–904 doi: 10.1182/blood-2006-06-027714 PubMedCrossRefGoogle Scholar
  30. 30.
    Vilmer E, Suciu S, Ferster A, Bertrand Y, Cavé H, Thyss A, Benoit Y, Dastugue N, Fournier M, Souillet G, Manel AM, Robert A, Nelken B, Millot F, Lutz P, Rialland X, Mechinaud F, Boutard P, Behar C, Chantraine JM, Plouvier E, Laureys G, Brock P, Uyttebroeck A, Margueritte G, Plantaz D, Norton L, Francotte N, Gyselinck J, Waterkeyn C, Solbu G, Philippe N, Otten J (2000) Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia 14:2257–2266 doi: 10.1038/sj.leu.2401960 PubMedCrossRefGoogle Scholar
  31. 31.
    Pui CH, Sandlund JT, Pei D, Campana D, Rivera GK, Ribeiro RC, Rubnitz JE, Razzouk BI, Howard SC, Hudson MM, Cheng C, Kun LE, Raimondi SC, Behm FG, Downing JR, Relling MV, Evans WE, Total Therapy Study XIIIB at St Jude Children’s Research Hospital (2004) Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood 104:2690–2696 doi: 10.1182/blood-2004-04-1616 PubMedCrossRefGoogle Scholar
  32. 32.
    Vora A, Mitchell CD, Lennard L, Eden TO, Kinsey SE, Lilleyman J, Richards SM, Medical Research Council; National Cancer Research Network Childhood Leukaemia Working Party (2006) Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 368:1339–1348 doi: 10.1016/S0140-6736(06)69558-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Möricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dördelmann M, Löning L, Beier R, Ludwig WD, Ratei R, Harbott J, Boos J, Mann G, Niggli F, Feldges A, Henze G, Welte K, Beck JD, Klingebiel T, Niemeyer C, Zintl F, Bode U, Urban C, Wehinger H, Niethammer D, Riehm H, Schrappe M, German–Austrian–Swiss ALL-BFM Study Group (2008) Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111:4477–4489 doi: 10.1182/blood-2007-09-112920 PubMedCrossRefGoogle Scholar
  34. 34.
    Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, Lazarus HM, Franklin IM, Litzow MR, Ciobanu N, Prentice HG, Durrant J, Tallman MS, Goldstone AH, ECOG; MRC/NCRI adult leukemia working party (2005) Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 106:3760–3767 doi: 10.1182/blood-2005-04-1623 PubMedCrossRefGoogle Scholar
  35. 35.
    Larson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ, Schulman P, Davey FR, Frankel SR, Bloomfield CD, George SL, Schiffer CA (1998) A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: CALGB study 9111. Blood 92:1556–1564PubMedGoogle Scholar
  36. 36.
    Annino L, Vegna ML, Camera A, Specchia G, Visani G, Fioritoni G, Ferrara F, Peta A, Ciolli S, Deplano W, Fabbiano F, Sica S, Di Raimondo F, Cascavilla N, Tabilio A, Leoni P, Invernizzi R, Baccarani M, Rotoli B, Amadori S, Mandelli F, GIMEMA Group (2002) Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood 99:863–871 doi: 10.1182/blood.V99.3.863 PubMedCrossRefGoogle Scholar
  37. 37.
    Linker C, Damon L, Ries C, Navarro W (2002) Intensified and shortened cyclical chemotherapy for adult acute lymphoblastic leukemia. J Clin Oncol 20:2464–2471 doi: 10.1200/JCO.2002.07.116 PubMedCrossRefGoogle Scholar
  38. 38.
    Thomas X, Boiron JM, Huguet F, Dombret H, Bradstock K, Vey N, Kovacsovics T, Delannoy A, Fegueux N, Fenaux P, Stamatoullas A, Vernant JP, Tournilhac O, Buzyn A, Reman O, Charrin C, Boucheix C, Gabert J, Lhéritier V, Fiere D (2004) Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 22:4075–4086 doi: 10.1200/JCO.2004.10.050 PubMedCrossRefGoogle Scholar
  39. 39.
    Bleyer WA, Dedrick RL (1977) Clinical pharmacology of intrathecal methotrexate. I. Pharmacokinetics in nontoxic patients after lumbar injection. Cancer Treat Rep 61:703–708PubMedGoogle Scholar
  40. 40.
    Lankelma J, Lippens RJ, Drenthe-Schonk A, Termond EF, van der Kleijn E (1980) Change in transfer rate of methotrexate from spinal fluid to plasma during intrathecal therapy in children and adults. Clin Pharmacokinet 5:465–475PubMedCrossRefGoogle Scholar
  41. 41.
    Bostrom BC, Erdmann GR, Kamen BA (2003) Systemic methotrexate exposure is greater after intrathecal than after oral administration. J Pediatr Hematol Oncol 25:114–117 doi: 10.1097/00043426-200302000-00006 PubMedCrossRefGoogle Scholar
  42. 42.
    Gutin PH, Green MR, Bleyer WA, Bauer VL, Wiernik PH, Walker MD (1976) Methotrexate pneumonitis induced by intrathecal methotrexate therapy: a case report with pharmacokinetic data. Cancer 38:1529–1534 doi: 10.1002/1097-0142(197610)38:4<1529::AID-CNCR2820380414>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  43. 43.
    Gregory RE, Pui CH, Crom WR (1991) Raised plasma methotrexate concentrations following intrathecal administration in children with renal dysfunction. Leukemia 5:999–1003PubMedGoogle Scholar
  44. 44.
    Mead GM, Sydes MR, Walewski J, Grigg A, Hatton CS, Pescosta N, Guarnaccia C, Lewis MS, McKendrick J, Stenning SP, Wright D, UKLG LY06 collaborators (2002) An international evaluation of CODOX-M and CODOX-M alternating with IVAC in adult Burkitt’s lymphoma: results of United Kingdom Lymphoma Group LY06 study. Ann Oncol 13:1264–1274 doi: 10.1093/annonc/mdf253 PubMedCrossRefGoogle Scholar
  45. 45.
    Kim S, Chatelut E, Kim JC, Howell SB, Cates C, Kormanik PA, Chamberlain MC (1993) Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J Clin Oncol 11:2186–2193PubMedGoogle Scholar
  46. 46.
    Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, Phuphanich S, Rogers LR, Gutheil JC, Batchelor T, Lyter D, Chamberlain M, Maria BL, Schiffer C, Bashir R, Thomas D, Cowens W, Howell SB (1999) Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 17:3110–3116PubMedGoogle Scholar
  47. 47.
    Jabbour E, O’Brien S, Kantarjian H, Garcia-Manero G, Ferrajoli A, Ravandi F, Cabanillas M, Thomas DA (2007) Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood 109:3214–3218 doi: 10.1182/blood-2006-08-043646 PubMedCrossRefGoogle Scholar
  48. 48.
    Marshall R, Gupta ND, Palacios E, Neitzschman HR (2008) Progressive paresthesia and weakness after intrathecal chemotherapy. J La State Med Soc 160:92–94PubMedGoogle Scholar
  49. 49.
    Lee HY, Im SI, Kang MH, Kim KM, Kim SH, Kim HG, Kang JH, Lee GW (2008) Irreversible paraplegia following one time prophylactic intrathecal chemotherapy in an adult patient with acute lymphoblastic leukemia. Yonsei Med J 49:151–154 doi: 10.3349/ymj.2008.49.1.151 PubMedCrossRefGoogle Scholar
  50. 50.
    Teh HS, Fadilah SA, Leong CF (2007) Transverse myelopathy following intrathecal administration of chemotherapy. Singapore Med J 48:e46–e49PubMedGoogle Scholar
  51. 51.
    Counsel P, Khangure M (2007) Myelopathy due to intrathecal chemotherapy: magnetic resonance imaging findings. Clin Radiol 62:172–176 doi: 10.1016/j.crad.2006.09.005 PubMedCrossRefGoogle Scholar
  52. 52.
    Bay A, Oner AF, Etlik O, Yilmaz C, Caksen H (2005) Myelopathy due to intrathecal chemotherapy: report of six cases. J Pediatr Hematol Oncol 27:270–272 doi: 10.1097/01.mph.0000162527.85024.e9 PubMedCrossRefGoogle Scholar
  53. 53.
    Massenkeil G, Späth-Schwalbe E, Flath B, Gottschalk S, Lehmann R, Arnold R (1998) Transient tetraparesis after intrathecal and high-dose systemic methotrexate. Ann Hematol 77:239–242 doi: 10.1007/s002770050450 PubMedCrossRefGoogle Scholar
  54. 54.
    Watterson J, Toogood I, Nieder M, Morse M, Frierdich S, Lee Y, Moertel CL, Priest JR (1994) Excessive spinal cord toxicity from intensive central nervous system-directed therapies. Cancer 74:3034–3041 doi: 10.1002/1097-0142(19941201)74:11<3034::AID-CNCR2820741122>3.0.CO;2-O PubMedCrossRefGoogle Scholar
  55. 55.
    Kleinschmidt-DeMasters BK, Yeh M (1992) “Locked-in syndrome” after intrathecal cytosine arabinoside therapy for malignant immunoblastic lymphoma. Cancer 70:2504–2507 doi: 10.1002/1097-0142(19921115)70:10<2504::AID-CNCR2820701019>3.0.CO;2-H PubMedCrossRefGoogle Scholar
  56. 56.
    Bates SE, Raphaelson MI, Price RA, McKeever P, Cohen S, Poplack DG (1985) Ascending myelopathy after chemotherapy for central nervous system acute lymphoblastic leukemia: correlation with cerebrospinal fluid myelin basic protein. Med Pediatr Oncol 13:4–8 doi: 10.1002/mpo.2950130103 PubMedCrossRefGoogle Scholar
  57. 57.
    Resar LM, Phillips PC, Kastan MB, Leventhal BG, Bowman PW, Civin CI (1993) Acute neurotoxicity after intrathecal cytosine arabinoside in two adolescents with acute lymphoblastic leukemia of B-cell type. Cancer 71:117–123 doi: 10.1002/1097-0142(19930101)71:1<117::AID-CNCR2820710119>3.0.CO;2-K PubMedCrossRefGoogle Scholar
  58. 58.
    Pound CM, Keene DL, Udjus K, Humphreys P, Johnston DL (2007) Acute encephalopathy and cerebral vasospasm after multiagent chemotherapy including PEG-asparaginase and intrathecal cytarabine for the treatment of acute lymphoblastic leukemia. J Pediatr Hematol Oncol 29:183–186 doi: 10.1097/MPH.0b013e3180335043 PubMedCrossRefGoogle Scholar
  59. 59.
    Legrand F, Dorgeret S, Saizou C, Duval M, Vilmer E (2002) Cerebellar herniation after intrathecal chemotherapy including cytosine arabinoside in a boy with T acute lymphoblastic leukemia. Leukemia 16:2454–2455 doi: 10.1038/sj.leu.2402569 PubMedCrossRefGoogle Scholar
  60. 60.
    Dufourg MN, Landman-Parker J, Auclerc MF, Schmitt C, Perel Y, Michel G, Levy P, Couillault G, Gandemer V, Tabone MD, Demeocq F, Vannier JP, Leblanc T, Leverger G, Baruchel A (2007) Age and high-dose methotrexate are associated to clinical acute encephalopathy in FRALLE 93 trial for acute lymphoblastic leukemia in children. Leukemia 21:238–247 doi: 10.1038/sj.leu.2404495 PubMedCrossRefGoogle Scholar
  61. 61.
    Cheung CW, Burton C, Smith P, Linch DC, Hoskin PJ, Ardeshna KM (2005) Central nervous system chemoprophylaxis in non-Hodgkin lymphoma: current practice in the UK. Br J Haematol 131:193–200 doi: 10.1111/j.1365-2141.2005.05756.x PubMedCrossRefGoogle Scholar
  62. 62.
    Fischer L, Korfel A, Kiewe P, Neumann M, Jahnke K, Thiel E (2008) Systemic high-dose methotrexate plus ifosfamide is highly effective for central nervous system (CNS) involvement of lymphoma. Ann Hematol Aug 5. In pressGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yok-Lam Kwong
    • 1
  • Dominic Y. M. Yeung
    • 2
  • Joyce C. W. Chan
    • 3
  1. 1.Department of Medicine, University of Hong KongQueen Mary HospitalHong KongChina
  2. 2.Department of MedicineTuen Mun HospitalHong KongChina
  3. 3.Department of MedicinePamela Youde Nethersole Eastern HospitalHong KongChina

Personalised recommendations