Annals of Hematology

, Volume 87, Issue 10, pp 819–827

K313dup is a recurrent CEBPA mutation in de novo acute myeloid leukemia (AML)

  • Maria J. Carnicer
  • Adriana Lasa
  • Marcus Buschbeck
  • Elena Serrano
  • Maite Carricondo
  • Salut Brunet
  • Anna Aventin
  • Jorge Sierra
  • Luciano Di Croce
  • Josep F. Nomdedeu
Original Article

Abstract

The CEBPA gene codes for a transcription factor that has a pivotal role in controlling proliferation and differentiation of myeloid progenitors. Acquired CEBPA mutations have been found in acute myeloid leukemias (AML) with a good prognosis, and most of these patients have a normal karyotype. In this paper, we report four cases that displayed the same K313dup in the CEBPA gene. All four had an AML-M1 with CD7 positivity and T-cell receptor gamma chain (TCR-γ) rearrangement. This mutation could represent nearly 10% of all CEBPA mutations described to date. K313dup disappeared in samples from patients in complete remission. In transfected cells, the K313dup mutant had reduced protein stability with respect to the wild-type protein. K313dup seems to be selected in leukemic cells, and its frequency in other AML series could be determined using the screening method reported in this paper.

Keywords

CEBPA Acute myeloid leukemia Mutations 

Supplementary material

277_2008_528_MOESM1_ESM.ppt (647 kb)
(DOC 662.5 KB).

References

  1. 1.
    Antonson P, Xanthopoulos KG (1995) Molecular cloning, sequence, and expression patterns of the human gene encoding CCAAT/enhancer binding protein alpha (C/EBP alpha). Biochem Biophys Res Commun 215:106–113. doi:10.1006/bbrc.1995.2439 PubMedCrossRefGoogle Scholar
  2. 2.
    Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27:263–270. doi:10.1038/85820 PubMedCrossRefGoogle Scholar
  3. 3.
    Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH et al (2002) Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 99:1332–1340. doi:10.1182/blood.V99.4.1332 PubMedCrossRefGoogle Scholar
  4. 4.
    Smith ML, Arch R, Smith LL, Bainton N, Neat M, Taylor C et al (2005) Development of a human acute myeloid leukaemia screening panel and consequent identification of novel gene mutation in FLT3 and CCND3. Br J Haematol 128:318–323. doi:10.1111/j.1365-2141.2004.05324.x PubMedCrossRefGoogle Scholar
  5. 5.
    Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG (1998) CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 18:4301–4314PubMedGoogle Scholar
  6. 6.
    Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR et al (2001) c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol 21:3789–3806. doi:10.1128/MCB.21.11.3789-3806.2001 PubMedCrossRefGoogle Scholar
  7. 7.
    Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al (2001) AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7:444–451. doi:10.1038/86515 PubMedCrossRefGoogle Scholar
  8. 8.
    Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW (1998) The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 18:322–333PubMedGoogle Scholar
  9. 9.
    Cilloni D, Carturan S, Gottardi E, Messa F, Messa E, Fava M et al (2003) Down-modulation of the C/EBPalpha transcription factor in core binding factor acute myeloid leukemias. Blood 102:2705–2706. doi:10.1182/blood-2003-07-2256 PubMedCrossRefGoogle Scholar
  10. 10.
    Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al (2004) The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci U S A 101:13312–13317. doi:10.1073/pnas.0404731101 PubMedCrossRefGoogle Scholar
  11. 11.
    Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR et al (2005) CBFB–SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 106:1369–1375. doi:10.1182/blood-2004-11-4392 PubMedCrossRefGoogle Scholar
  12. 12.
    Tenen DG (2001) Abnormalities of the CEBP alpha transcription factor: a major target in acute myeloid leukemia. Leukemia 15:688–689. doi:10.1038/sj/leu/2402088 PubMedCrossRefGoogle Scholar
  13. 13.
    Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N et al (2003) CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 101:1141–1148. doi:10.1182/blood-2002-05-1374 PubMedCrossRefGoogle Scholar
  14. 14.
    Behre G, Singh SM, Liu H, Bortolin LT, Christopeit M, Radomska HS et al (2002) Ras signaling enhances the activity of C/EBP alpha to induce granulocytic differentiation by phosphorylation of serine 248. J Biol Chem 277:26293–26299. doi:10.1074/jbc.M202301200 PubMedCrossRefGoogle Scholar
  15. 15.
    Ross SE, Radomska HS, Wu B, Zhang P, Winnay JN, Bajnok L et al (2004) Phosphorylation of C/EBPalpha inhibits granulopoiesis. Mol Cell Biol 24:675–686. doi:10.1128/MCB.24.2.675-686.2004 PubMedCrossRefGoogle Scholar
  16. 16.
    Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al (2006) Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 203:371–381. doi:10.1084/jem.20052242 PubMedCrossRefGoogle Scholar
  17. 17.
    Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D (2004) Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 103:1883–1890. doi:10.1182/blood-2003-06-1978 PubMedCrossRefGoogle Scholar
  18. 18.
    Wierenga AT, Schepers H, Moore MA, Vellenga E, Schuringa JJ (2006) STAT5-induced self-renewal and impaired myelopoiesis of human hematopoietic stem/progenitor cells involves down-modulation of C/EBPalpha. Blood 107:4326–4333. doi:10.1182/blood-2005-11-4608 PubMedCrossRefGoogle Scholar
  19. 19.
    Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al (2003) Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101:3164–3173. doi:10.1182/blood-2002-06-1677 PubMedCrossRefGoogle Scholar
  20. 20.
    Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 100:2717–2723. doi:10.1182/blood-2002-03-0990 PubMedCrossRefGoogle Scholar
  21. 21.
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ, Berna Beverloo H, Tenen DG, Lowenberg B, Delwel R (2003) Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 4:31–40. doi:10.1038/sj.thj.6200216
  22. 22.
    Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et al (2004) CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 22:624–633. doi:10.1200/JCO.2004.06.060 PubMedCrossRefGoogle Scholar
  23. 23.
    Frohling S, Schlenk RF, Krauter J, Thiede C, Ehninger G, Haase D et al (2005) Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations. Genes Chromosomes Cancer 42:427–432. doi:10.1002/gcc.20152 PubMedCrossRefGoogle Scholar
  24. 24.
    Snaddon J, Smith ML, Neat M, Cambal-Parrales M, Dixon-McIver A, Arch R et al (2003) Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer 37:72–78. doi:10.1002/gcc.10185 PubMedCrossRefGoogle Scholar
  25. 25.
    Lin LI, Lin TC, Chou WC, Tang JL, Lin DT, Tien HF (2007) A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia 21:2236CrossRefGoogle Scholar
  26. 26.
    Tiesmeier J, Czwalinna A, Muller-Tidow C, Krauter J, Serve H, Heil G et al (2003) Evidence for allelic evolution of C/EBPalpha mutations in acute myeloid leukaemia. Br J Haematol 123:413–419. doi:10.1046/j.1365-2141.2003.04618.x PubMedCrossRefGoogle Scholar
  27. 27.
    Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh YC et al (2005) Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res 11:1372–1379. doi:10.1158/1078-0432.CCR-04-1816 PubMedCrossRefGoogle Scholar
  28. 28.
    Kaeferstein A, Krug U, Tiesmeier J, Aivado M, Faulhaber M, Stadler M et al (2003) The emergence of a C/EBPalpha mutation in the clonal evolution of MDS towards secondary AML. Leukemia 17:343–349. doi:10.1038/sj.leu.2402805 PubMedCrossRefGoogle Scholar
  29. 29.
    Shih LY, Liang DC, Huang CF, Wu JH, Lin TL, Wang PN et al (2006) AML patients with CEBPalpha mutations mostly retain identical mutant patterns but frequently change in allelic distribution at relapse: a comparative analysis on paired diagnosis and relapse samples. Leukemia 20:604–609. doi:10.1038/sj.leu.2404124 PubMedCrossRefGoogle Scholar
  30. 30.
    Munoz L, Nomdedeu JF, Villamor N, Guardia R, Colomer D, Ribera JM et al (2003) Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 17:76–82. doi:10.1038/sj.leu.2402708 PubMedCrossRefGoogle Scholar
  31. 31.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10:1911–1918PubMedGoogle Scholar
  32. 32.
    Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97:2434–2439. doi:10.1182/blood.V97.8.2434 PubMedCrossRefGoogle Scholar
  33. 33.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF, GIMEMA Acute Leukemia Working Party (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266PubMedCrossRefGoogle Scholar
  34. 34.
    Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-Model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520 PubMedCrossRefGoogle Scholar
  35. 35.
    Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520. doi:10.1006/jmbi.2000.3741 PubMedCrossRefGoogle Scholar
  36. 36.
    Lund O, Nielsen C, Lundegaard C, Worning P (2002) Computer program to extract 3D models. Abstract at the CASP5 conference, A102.Google Scholar
  37. 37.
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85. doi:10.1038/356083a0 PubMedCrossRefGoogle Scholar
  38. 38.
    Gracy J, Chiche L, Sallantin J (1993) Improved alignment of weakly homologous protein sequences using structural information. Protein Eng 6:821–829. doi:10.1093/protein/6.8.821 PubMedCrossRefGoogle Scholar
  39. 39.
    Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362. doi:10.1002/prot.340170404 PubMedCrossRefGoogle Scholar
  40. 40.
    Chiche L, Gregoret LM, Cohen FE, Kollman PA (1990) Protein model structure evaluation using the solvation free energy of folding. Proc Natl Acad Sci U S A 87:3240–3243. doi:10.1073/pnas.87.8.3240 PubMedCrossRefGoogle Scholar
  41. 41.
    Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374. doi:10.1016/S0968-0004(00)89080-5 PubMedCrossRefGoogle Scholar
  42. 42.
    Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel R (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628. doi:10.1056/NEJMoa040465
  43. 43.
    Miwa H, Nakase K, Kita K (1996) Biological characteristics of CD7(+) acute leukemia. Leuk Lymphoma 21:239–244PubMedGoogle Scholar
  44. 44.
    Miwa H, Kita K, Nishii K, Morita N, Takakura N, Ohishi K et al (1993) Expression of MDR1 gene in acute leukemia cells: association with CD7+ acute myeloblastic leukemia/acute lymphoblastic leukemia. Blood 82:3445–3451PubMedGoogle Scholar
  45. 45.
    Perea G, Domingo A, Villamor N, Palacios C, Junca J, Torres P et al (2005) Adverse prognostic impact of CD36 and CD2 expression in adult de novo acute myeloid leukemia patients. Leuk Res 29:1109–1116. doi:10.1016/j.leukres.2005.02.015 PubMedCrossRefGoogle Scholar
  46. 46.
    Asou H, Gombart AF, Takeuchi S, Tanaka H, Tanioka M, Matsui H et al (2003) Establishment of the acute myeloid leukemia cell line Kasumi-6 from a patient with a dominant-negative mutation in the DNA-binding region of the C/EBPalpha gene. Genes Chromosomes Cancer 36:167–174. doi:10.1002/gcc.10161 PubMedCrossRefGoogle Scholar
  47. 47.
    Trivedi AK, Bararia D, Christopeit M, Peerzada AA, Singh SM, Kieser A et al (2007) Proteomic identification of C/EBP-DBD multiprotein complex: JNK1 activates stem cell regulator C/EBPalpha by inhibiting its ubiquitination. Oncogene 26:1789–1801. doi:10.1038/sj.onc.1209964 PubMedCrossRefGoogle Scholar
  48. 48.
    Keeshan K, He Y, Wouters BJ, Shestova O, Xu L, Sai H et al (2006) Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 10:401–411. doi:10.1016/j.ccr.2006.09.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Maria J. Carnicer
    • 1
  • Adriana Lasa
    • 1
  • Marcus Buschbeck
    • 2
  • Elena Serrano
    • 1
  • Maite Carricondo
    • 1
  • Salut Brunet
    • 1
  • Anna Aventin
    • 1
  • Jorge Sierra
    • 1
  • Luciano Di Croce
    • 2
    • 3
  • Josep F. Nomdedeu
    • 1
    • 4
  1. 1.Department of Hematology, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Centre de Regulacio Genomica (CRG)Universitat Pompeu FabraBarcelonaSpain
  3. 3.ICREA and Centre de Regulacio Genomica (CRG)BarcelonaSpain
  4. 4.Laboratori d’Hematologia, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations