Advertisement

Annals of Hematology

, Volume 87, Issue 11, pp 863–876 | Cite as

Central venous catheter-related infections in hematology and oncology

Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO)
  • Hans-Heinrich WolfEmail author
  • Malte Leithäuser
  • Georg Maschmeyer
  • Hans Salwender
  • Ulrike Klein
  • Iris Chaberny
  • Florian Weissinger
  • Dieter Buchheidt
  • Markus Ruhnke
  • Gerlinde Egerer
  • Oliver Cornely
  • Gerd Fätkenheuer
  • Sabine Mousset
Review Article

Abstract

Catheter-related infections (CRI) cause considerable morbidity in hospitalized patients. The incidence does not seem to be higher in neutropenic patients than in nonneutropenic patients. Gram-positive bacteria (coagulase-negative staphylococci, Staphylococcus aureus) are the pathogens most frequently cultured, followed by Candida species. Positive blood cultures are the cornerstone in the diagnosis of CRIs, while local signs of infection are not necessarily present. Blood cultures should be taken from peripheral blood and from the venous catheter. A shorter time to positivity of catheter blood cultures as compared with peripheral blood cultures supports the diagnosis of a CRI. In many cases, a definite diagnosis requires catheter removal and microbiological analysis. The role plate method with semiquantitative cultures has been established as standard in most laboratories. Antimicrobial treatment of CRI should be directed by the in vitro susceptibility of the isolated pathogen. Primary removal of the catheter is mandatory in S. aureus and Candida infections, as well as in case of tunnel or pocket infections. Future studies will elucidate whether the rate of CRI in neutropenic patients may be reduced by catheters impregnated with antimicrobial agents.

Keywords

Catheter-related infections Guidelines Neutropenia Antimicrobial treatment Infection prophylaxis Biofilm 

References

  1. 1.
    Dobbins BM, Kite P, Kindon MJ, McMahon MJ, Wilcox MH (2002) DNA fingerprinting analysis of coagulase negative staphylococci implicated in catheter related bloodstream infections. J Clin Pathol 55:824–828, doi: 10.1136/jcp.55.11.824 PubMedGoogle Scholar
  2. 2.
    Garner JS, Jarvis WR, Emori TG, Horan TC, Kellner O (1988) CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140, doi: 10.1016/0196-6553(88)90053-3 PubMedGoogle Scholar
  3. 3.
    Mermel LA, Barry MF, Sherertz RJ, Raad II, O'Grady N, Harris AS et al (2001) Guidelines for the management of intravascular catheter related infections. Clin Infect Dis 32:1249–1272, doi: 10.1086/320001 PubMedGoogle Scholar
  4. 4.
    Costa SF, Miceli MH, Anaissie EJ (2004) Mucosa or skin as a source of coagulase-negative staphylococcal bacteraemia? Lancet Infect Dis 4:278–286, doi: 10.1016/S1473-3099(04)01003-5 PubMedGoogle Scholar
  5. 5.
    Raad II, Luna M, Khalil SA, Costerton JW, Lam C, Bodey GP (1994) The relationship between the thrombotic and infectious complications of central venous catheters. JAMA 271:1014–1016, doi: 10.1001/jama.271.13.1014 PubMedGoogle Scholar
  6. 6.
    Raad I (1998) Intravascular-catheter-related infections. Lancet 351:893–898, doi: 10.1016/S0140-6736(97)10006-X PubMedGoogle Scholar
  7. 7.
    Sherertz RJ, Carruth WA, Marosok RD, Espeland MA, Johnson RA, Solomon DD (1995) Contribution of vascular catheter material to the pathogenesis of infection: the enhanced risk of silicone in vivo. J Biomed Mater Res 29:635–645, doi: 10.1002/jbm.820290511 PubMedGoogle Scholar
  8. 8.
    Biffi R, de Braud F, Orsi F, Pozzi S, Mauri S, Goldhirsch A et al (1998) Totally implantable central venous access ports for long-term chemotherapy. A prospective study analyzing complications and costs of 333 devices with a minimum follow-up of 180 days. Ann Oncol 9:767–773, doi: 10.1023/A:1008392423469 PubMedGoogle Scholar
  9. 9.
    Safdar N, Fine JP, Maki DG (2005) Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 142:451–466PubMedGoogle Scholar
  10. 10.
    Elishoov H, Or R, Strauss N, Engelhard D (1998) Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine 77:83–101, doi: 10.1097/00005792-199803000-00002 PubMedGoogle Scholar
  11. 11.
    Nouwen JL, Wielenga JJ, van Overhagen H, Lameris JS, Kluytmans JA, Behrendt MD et al (1999) Hickman catheter-related infections in neutropenic patients: insertion in the operating theater versus insertion in the radiology suite. J Clin Oncol 17:1304–1311PubMedGoogle Scholar
  12. 12.
    Howell PB, Walters PE, Donowitz GR, Farr BM (1995) Risk factors for infection of adult patients with cancer who have tunnelled central venous catheters. Cancer 75:1367–1375, doi: 10.1002/1097-0142(19950315)75:6<1367::AID-CNCR2820750620>3.0.CO;2-Z PubMedGoogle Scholar
  13. 13.
    Rello J, Ochagavia A, Sabanes E, Roque M, Mariscal D, Reynaga E et al (2000) Evaluation of outcome of intravenous catheter-related infections in critically Ill patients. Am J Respir Crit Care Med 162:1027–1030PubMedGoogle Scholar
  14. 14.
    Renaud B, Brun-Buisson C (2001) Group I-BS. Outcomes of primary and catheter-related bacteremia. A cohort and case-control study in critically ill patients. Am J Respir Crit Care Med 163:1515–1516Google Scholar
  15. 15.
    Johansson E et al (2004) Totally implantable subcutaneous port system versus central venous catheter placed before induction chemotherapy in patients with acute leukemia—a randomized study. Support Care Cancer 12:99–105PubMedGoogle Scholar
  16. 16.
    Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB (2003) Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36:1103–1110, doi: 10.1086/374339 PubMedGoogle Scholar
  17. 17.
    Hampton AA, Sheretz RJ (1988) Vascular-access infections in hospitalized patients. Surg Clin North Am 68:57–71, MedlinePubMedGoogle Scholar
  18. 18.
    Moro ML, Vigano EF, Cozzi Lepri A (1994) Group TCVC-RIS. Risk factors for central venous catheter-related infections in surgical and intensive care units. Infect Control Hosp Epidemiol 15:253–264PubMedGoogle Scholar
  19. 19.
    Snydman DR, Murray SA, Kornfeld SJ, Majka JA, Ellis CA (1982) Total parenteral nutrition-related infections. Prospective epidemiologic study using semiquantitative methods. Am J Med 73:695–699, doi: 10.1016/0002-9343(82)90412-0 PubMedGoogle Scholar
  20. 20.
    Goetz AM, Wagener MM, Miller JM, Muder RR (1998) Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol 19:842–845PubMedGoogle Scholar
  21. 21.
    Joynt GM, Kew J, Gomersall CD, Leung VY, Liu EK (2000) Deep benous thrombosis caused by femoral venous catheters in critically ill adult patients. Chest 117:178–183, doi: 10.1378/chest.117.1.178 PubMedGoogle Scholar
  22. 22.
    Deshpande KS, Hatem C, Ulrich HL, Currie BP, Aldrich TK, Bryan-Brown CW et al (2005) The incidence of infectious complications of central venous catheters at the subclavian, internal jugular, and femoral sites in an intensive care unit population. Crit Care Med 33:13–20, doi: 10.1097/01.CCM.0000149838.47048.60 PubMedGoogle Scholar
  23. 23.
    Greene JN (1996) Catheter-related complications of cancer therapy. Infect Dis Clin North Am 10:255–295, doi: 10.1016/S0891-5520(05)70299-3 PubMedGoogle Scholar
  24. 24.
    Raad II, Hohn DC, Gilbreath BJ, Suleiman N, Hill LA, Bruso PA et al (1994) Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 15:231–238PubMedGoogle Scholar
  25. 25.
    Lordick F, Hentrich M, Decker T, Hennig M, Pohlmann H, Hartenstein R et al (2003) Ultrasound screening for internal jugular vein thrombosis aids the detection of central venous catheter-related infections in patients with haemato-oncological diseases: a prospective observational study. Br J Haematol 120:1073–1078, doi: 10.1046/j.1365-2141.2003.04199.x PubMedGoogle Scholar
  26. 26.
    van Rooden CJ, Schippers EF, Barge RM, Rosendaal FR, Guiot HF, van der Meer FJ et al (2005) Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: a prospective study. J Clin Oncol 23:2655–2660, doi: 10.1200/JCO.2005.05.002 PubMedGoogle Scholar
  27. 27.
    Heard SO, Wagle M, Vajayakumar E, McLean S, Brueggemann A, Napolitano LM et al (1998) Influence of triple-umen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Arch Intern Med 158:81–87, doi: 10.1001/archinte.158.1.81 PubMedGoogle Scholar
  28. 28.
    Sherertz RJ, Raad II, Belani A, Koo LC, Rand KH, Pickett DL et al (1990) Three year experience with sonicated vascular cetheter cultures in a clinical miccrobiology laboratory. J Clin Microbiol 28:76–82PubMedGoogle Scholar
  29. 29.
    Seifert H, Cornely O, Seggewiss K, Deceker M, Stefanik D, Wisplinghoff H et al (2003) Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultrures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol 41:118–123, doi: 10.1128/JCM.41.1.118-123.2003 PubMedGoogle Scholar
  30. 30.
    Link H, Boehme A, Cornely OA, Hoeffken K, Kellner O, Kern WV et al (2003) Antimicrobial therapy of unexplained fever in neutropenic patients. Ann Hematol 82:S105–S117, doi: 10.1007/s00277-003-0764-4 PubMedGoogle Scholar
  31. 31.
    Fätkenheuer G, Buchheidt D, Cornely O, Fuhr H-G, Karthaus M, Kisro J et al (2003) Central venous catheter (CVC)-related infections in neutropenic patients—Guidelines of the Infectious Diseaeses Working Party (AGIHO) of the German Society of Hematology and Oncology. Ann Hematol 82:S149–S157, doi: 10.1007/s00277-003-0769-z PubMedGoogle Scholar
  32. 32.
    Safdar N, Maki D (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 30:62–67PubMedGoogle Scholar
  33. 33.
    Plum J, Sudkamp S, Grabensee B (1994) Results of ultrasound-assisted diagnosis of tunnel infections in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 23:99–104PubMedGoogle Scholar
  34. 34.
    Dobbins BM, Catton JA, Kite P, McMahon MJ, Wilcox MH (2003) Each lumen is a potential source of central venous catheter-related bloodstream infection. Crit Care Med 31:1688–1690, doi: 10.1097/01.CCM.0000063257.04633.AE PubMedGoogle Scholar
  35. 35.
    Blot F, Nitenberg G, Chachaty E, Raynard B, Germann N, Antoun S et al (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354:1071–1077, doi: 10.1016/S0140-6736(98)11134-0 PubMedGoogle Scholar
  36. 36.
    Abdelkefi A, Achour W, Ben Othman T, Torjman L, Ladeb S, Lakhal A et al (2005) Difference in time to positivity is useful for the diagnosis of catheter-related bloodstream infection in hematopoietic stem cell transplant recipients. Bone Marrow Transplant 35:397–401, doi: 10.1038/sj.bmt.1704773 PubMedGoogle Scholar
  37. 37.
    Raad II, Hanna HA, Boktour M, Girgawy E, Danawi H, Mardani M et al (2004) Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis 38:1119–1127, doi: 10.1086/382874 PubMedGoogle Scholar
  38. 38.
    Rijnders BJ, Verwaest C, Peetermans WE, Wilmer A, Vandecasteele S, van Eldere J et al (2001) Difference in time to positivity of hub-blood versus nonhub-blood cultures is not useful for the diagnosis of catheter-related bloodstream infection in critically ill patients. Crit Care Med 29:1399–1403, doi: 10.1097/00003246-200107000-00016 PubMedGoogle Scholar
  39. 39.
    Capdevila JA, Planes AM, Palomar M, Gasser I, Almirante B, Pahissa A et al (1992) Value of differential quantitatiove blood cultures in the diagnosis of catheter- related sepsis. Eur J Microbiol Infect Dis 11:403–407, doi: 10.1007/BF01961854 Google Scholar
  40. 40.
    Tanguy M, Seguin P, Laviolle B, Desbordes L, Malledant Y (2005) Hub qualitative blood culture is useful for diagnosis of catheter-related infections in critically ill patients. Intensive Care Med 31:645–648, doi: 10.1007/s00134-005-2600-x PubMedGoogle Scholar
  41. 41.
    Warwick A, Wilks M, Hennessy E, Powell-Tuck J, Small M, Sharp J et al (2004) Use of 16S ribosomal DNA detection for diagnosis of central vascular catheter-associated bacterial infection. J Clin Microbiol 42:1402–1408, doi: 10.1128/JCM.42.4.1402-1408.2004 PubMedGoogle Scholar
  42. 42.
    Catton JA, Dobbins BM, Kite P, Wood JM, Eastwood K, Sugden S et al (2005) In situ diagnosis of intravascular catheter-related bloodstream infection: a comparison of quantitative culture, differential time to positivity, and endoluminal brushing. Crit Care Med 33:787–791, doi: 10.1097/01.CCM.0000157968.98476.F3 PubMedGoogle Scholar
  43. 43.
    Dobbins BM, Kite P, Catton JA, Wilcox MH, McMahon MJ (2004) In situ endoluminal brushing: a safe technique for the diagnosis of catheter-related bloodstream infection. J Hosp Infect 58:233–237, doi: 10.1016/j.jhin.2004.06.025 PubMedGoogle Scholar
  44. 44.
    Kite P, Dobbins BM, Wilcox MH, McMahon MJ (1999) Rapid diagnosis of central-venous-catheter-related bloodstream infection without catheter removal. Lancet 354:1504–1507, doi: 10.1016/S0140-6736(99)04070-2 PubMedGoogle Scholar
  45. 45.
    Fan ST, Tech-Chan CH, Lau KF, Chu KW, Kwan AK, Wong KK (1988) Predictive value of surveillance skin and hub cultures in central venous catheter sepsis. J Hosp Infect 12:191–198, doi: 10.1016/0195-6701(88)90006-0 PubMedGoogle Scholar
  46. 46.
    Maki DG, Weise CE, Sarafin HE (1977) A semiquantitative method for identifying intravenous-catheter-related infection. N Engl J Med 296:1305–1309PubMedGoogle Scholar
  47. 47.
    Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M (1987) Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med 147:873–877, doi: 10.1001/archinte.147.5.873 PubMedGoogle Scholar
  48. 48.
    Brun-Buisson C, Doyon F, Sollet JP, Cochard JF, Cohen Y, Nitenberg G (2004) Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med 30:837–843, doi: 10.1007/s00134-004-2221-9 PubMedGoogle Scholar
  49. 49.
    Bouza E, Alvarado N, Alcal L, Sanchez-Conde M, Perez MJ, Munoz P et al (2005) A prospective, randomized, and comparative study of 3 different methods for the diagnosis of intravascular catheter colonization. Clin Infect Dis 40:1096–1100, doi: 10.1086/428576 PubMedGoogle Scholar
  50. 50.
    Rijnders BJ, van Wijngaerden E, Peetermans WE (2002) Catheter-tip colonization as a surrogate end point in clinical studies on catheter-related bloodstream infection: how strong is the evidence? Clin Investig 35:1053–1058Google Scholar
  51. 51.
    Dugdale DC, Ramsey PG (1990) Staphylococcus aureus bacteremia in patients with Hickman catheters. Am J Med 89:137–141, doi: 10.1016/0002-9343(90)90290-T PubMedGoogle Scholar
  52. 52.
    Marr KA, Sexton DJ, Conlon PJ, Schwab SJ, Kirkland KB (1997) Catheter-related bacteremia and outcome of attempted catheter salvage in patients undergoing hemodialysis. Ann Intern Med 127:275–280PubMedGoogle Scholar
  53. 53.
    Rijnders BJ et al (2004) Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med 30:1073–1080PubMedGoogle Scholar
  54. 54.
    Benezra D, Kiehn TE, Gold JW, Brown AE, Turnbull AD, Armstrong D (1988) Prospective study of infections in indwelling central venous catheters using quantitative blood cultures. Am J Med 85:495–498PubMedGoogle Scholar
  55. 55.
    Severien C, Nelson JD (1991) Frequency of infections associated with implanted systems vs. cuffed, tunneled Silastic venous catheters in patients with acute leukemia. Am J Dis Child 145:1433–1438PubMedGoogle Scholar
  56. 56.
    Dompeling EC, Donnelly JP, Deresinski SC, Feld R, Lane-Allman EF, DePauw BE (1996) Early identification of neutropenic patients at risk of gramnegative bacteraemia and the impact of empirical administration of vancomycin. Eur J Cancer 32A:1332–1339, doi: 10.1016/0959-8049(96)00050-0 PubMedGoogle Scholar
  57. 57.
    Engelhaard D, Elishoov H, Strauss N, Naparstek E, Nagler A, Simhon A et al (1996) Nosocomial coagulase-negative staphylococcal infections in bone marrow transplantation recipients with central vein catheter. A 5-year prospective study. Transplantation 61:430–434, doi: 10.1097/00007890-199602150-00020 Google Scholar
  58. 58.
    Erjacev Z, de Vries-Hospers HG, Laseur M, Halie RM, Daenen S (2000) A prospective, randomized, double-blinded, placebo-controlled trial of empirical teicoplanin in febrile neutropenia with persistent fever after imipenem monotherapy. J Antimicrob Chemother 45:843–849, doi: 10.1093/jac/45.6.843 Google Scholar
  59. 59.
    Siegman-Igra Y, Jacobi E, Lang R, Schwartz D, Carmeli Y (2005) Unexpected hospital-acquired bacteraemia in patients at low risk of bloodstream infection: the role of a heparin drip. J Hosp Infect 60:122–128, doi: 10.1016/j.jhin.2004.11.021 PubMedGoogle Scholar
  60. 60.
    Chang FY, Peacock JEJ, Musher DM, Triplett P, MacDonald BB, Mylotte JM et al (2003) Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine 82:333–339, doi: 10.1097/01.md.0000091184.93122.09 PubMedGoogle Scholar
  61. 61.
    Raad II, Sabbagh MF (1992) Optimal duration of therapy for catheter-related Staphylococcus aureus bacteremia: a study of 55 cases and review. Clin Infect Dis 14:75–82PubMedGoogle Scholar
  62. 62.
    Gaillard JL, Merlino R, Pajot N, Goulet O, Fauchere JL, Ricour C et al (1990) Conventional and nonconventional modes of vancomycin administration to decontaminate the internal surface of catheters colonized with coagulase-negative staphylococci. J Parenter Enter Nutr 14:593–597Google Scholar
  63. 63.
    Rijnders BJ, Van Wijngaerden E, Vandecasteele SJ, Stas M, Peetermans WE (2005) Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: randomized, placebo-controlled trial. J Antimicrob Chemother 55:90–94, doi: 10.1093/jac/dkh488 PubMedGoogle Scholar
  64. 64.
    Sherertz RJ, Ely EW, Westbrook DM, Gledhill KS, Streed SA, Kiger B et al (2000) Education of physicians-in-training can decrease the risk for vascular catheter infection. Ann Intern Med 132:641–648PubMedGoogle Scholar
  65. 65.
    Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D (2000) Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 355:1864–1868, doi: 10.1016/S0140-6736(00)02291-1 PubMedGoogle Scholar
  66. 66.
    Randolph AG, Cook DJ, Gonzales CA, Pribble CG (1996) Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 24:2053–2058, doi: 10.1097/00003246-199612000-00020 PubMedGoogle Scholar
  67. 67.
    Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C et al (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 327:361, doi: 10.1136/bmj.327.7411.361 PubMedGoogle Scholar
  68. 68.
    Fridkin SK, Pear SM, Hagman E, Skogman K, Bjorkholm M (1996) The role of understaffing in central venous catheter-associated infections. Infect Control Hosp Epidemiol 17:150–158PubMedCrossRefGoogle Scholar
  69. 69.
    Warren DK, Zack JE, Mayfield JL, Prentice CA, Fraser VJ, Kollef MH (2004) The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 126:1612–1618, doi: 10.1378/chest.126.5.1612 PubMedGoogle Scholar
  70. 70.
    Lobo RD, Levin AS, Gomes LM, Cursino R, Park M, Figueiredo VB et al (2005) Impact of an educational program and policy changes on decreasing catheter-associated bloodstream infections in a medical intensive care unit in Brazil. Am J Infect Control 33:83–87, doi: 10.1016/j.ajic.2004.05.003 PubMedGoogle Scholar
  71. 71.
    Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115:529–535, doi: 10.1016/j.amjmed.2003.07.005 PubMedGoogle Scholar
  72. 72.
    Eggimann P, Pittet D (2001) Infection control in the ICU. Chest 120:2059–2093, doi: 10.1378/chest.120.6.2059 PubMedGoogle Scholar
  73. 73.
    Yoo S, Ha M, Choi D, Pai H (2001) Effectiveness of surveillance of central catheter-related bloodstream infection in an ICU in Korea. Infect Control Hosp Epidemiol 22:433–436, doi: 10.1086/501930 PubMedGoogle Scholar
  74. 74.
    Coopersmith CM, Rebmann TL, Zack JE, Ward MR, Corcoran RM, Schallom ME et al (2002) Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Crit Care Med 30:59–64, doi: 10.1097/00003246-200201000-00009 PubMedGoogle Scholar
  75. 75.
    Berenholtz SM, Pronovost PJ, Lipsett PA, Hobson D, Earsing K, Farley J-E et al (2004) Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 32:2014–2020, doi: 10.1097/01.CCM.0000142399.70913.2F PubMedGoogle Scholar
  76. 76.
    Committee HICPA (1996) Guideline for prevention of intravascular device-related infections. Part II: Recommendations for the prevention of nosocomial intravascular device-related infections. Am J Infect Control 24:277–293Google Scholar
  77. 77.
    Pemberton LB, Lyman B, Lander V, Covinsky J (1986) Sepsis from triple- vs. single-lumen catheters during total parenteral nutrition in surgical or critically ill patients. Arch Surg 121:591–594PubMedGoogle Scholar
  78. 78.
    Yeung C, May J, Hughes R (1988) Infection rate for single lumen vs. triple lumen subclavian catheters. Infect Control Hosp Epidemiol 9:154–158PubMedGoogle Scholar
  79. 79.
    Farkas JC, Liu N, Bleriot JP, Chevret S, Goldstein FW, Carlet J (1992) Single- vs. triple-lumen central catheter-related sepsis: a prospective randomized study in a critically ill population. Am J Med 93:277–282, doi: 10.1016/0002-9343(92)90233-2 PubMedGoogle Scholar
  80. 80.
    Ma TV, Yoshinaka R, Banaag A, Johnson B, Davis S, Berman SM (1998) Total parenteral nutrition via multilumen catheters does not increase the risk of catheter-related sepsis: a randomized, prospective study. Clin Infect Dis 27:500–503, doi: 10.1086/514687 PubMedGoogle Scholar
  81. 81.
    Merrer J, De Jonghe B, Golliot F, Lefrant JY, Raffy B, Barre E et al (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286:700–707, doi: 10.1001/jama.286.6.700 PubMedGoogle Scholar
  82. 82.
    Mimoz O, Pieroni L, Lawrence C, Edouard A, Costa Y, Samii K et al (1996) Prospective, randomized trial of two antiseptic solutions for prevention of central venous or arterial catheter colonization and infection in intensive care unit patients. Crit Care Med 24:1818–1823, doi: 10.1097/00003246-199611000-00010 PubMedGoogle Scholar
  83. 83.
    Maki DG, Ringer M, Alvarado CJ (1991) Prospective randomised trial of povidone–iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet 338:339–343, doi: 10.1016/0140-6736(91)90479-9 PubMedGoogle Scholar
  84. 84.
    Little JR, Maurray PR, Traynor PS, Spitznagel E (1999) A randomized trial of povidone–iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med 107:119–125, doi: 10.1016/S0002-9343(99)00197-7 PubMedGoogle Scholar
  85. 85.
    Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S (2002) Chlorhexidine compared with povidone–iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 136:792–801PubMedGoogle Scholar
  86. 86.
    O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol 23:759–769, doi: 10.1086/502007 PubMedGoogle Scholar
  87. 87.
    Langgartner J, Linde HJ, Lehn N, Reng M, Scholmerich J, Gluck T (2004) Combined skin disinfection with chlorhexidine/propanol and aqueous povidone–iodine reduces bacterial colonisation of central venous catheters. Intensive Care Med 30:1081–1088, doi: 10.1007/s00134-004-2282-9 PubMedGoogle Scholar
  88. 88.
    Tietz A, Frei R, Dangel M, Bolliger D, Passweg JR, Gratwohl A et al (2005) Octenidine hydrochloride for the care of central venous catheter insertion sites in severely immunocompromised patients. Infect Control Hosp Epidemiol 26:703–707, doi: 10.1086/502606 PubMedGoogle Scholar
  89. 89.
    Cook DJ, Randolph AG, Kernerman P, Cupido C, King D, Soukup C et al (1997) Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 25:1417–1424, doi: 10.1097/00003246-199708000-00033 PubMedGoogle Scholar
  90. 90.
    Ljungman P, Hagglund H, Bjorkstrand B, Lonnqvist B, Ringden O (1997) Preoperative teicoplanin for prevention of gram-positive infections in neutropenic patients with indweling central venous catheters: a randomized, controlled studa. Support Care Cancer 5:485–488, doi: 10.1007/s005200050117 PubMedGoogle Scholar
  91. 91.
    van de Wetering M et al (2005) Prophylactic antibiotics for preventing early Gram-positive central venous catheter infections in oncology patients, a Cochrane systematic review. Cancer Treat Rev 31:186–196PubMedGoogle Scholar
  92. 92.
    Zakrzewska-Bode A, Muytjens HL, Liem KD, Hoogkamp-Korstanje JA (1995) Mupirocin resistance in coagulase-negative staphylococci, sfter topical prophylaxis for the reduction of colonization of central venous catheters. J Hosp Infect 31:189–193, doi: 10.1016/0195-6701(95)90065-9 PubMedGoogle Scholar
  93. 93.
    Miller MA, Dascal A, Portnoy J, Mendelson J (1996) Development of mupirocin resistance among methicillin-resistant Staphylococcus aureus after widespread use of nasal mupirocin ointment. Infect Control Hosp Epidemiol 17:811–813PubMedGoogle Scholar
  94. 94.
    Gillies D, O’Riordan L, Carr D, Frost J, Gunning R, O’Brien I (2003) Gauze and transparent polyurethane dressings for central venous catheters. Cochrane Database Syst Rev 4:CD003827PubMedGoogle Scholar
  95. 95.
    Maki DG, Stolz SS, Wheeler S, Mermel LA (1994) A propective, randomized trial of gauze and two polyurethane dressings for site care of pulmonary artery catheters: implications for catheter management. Crit Care Med 22:1729–1737PubMedCrossRefGoogle Scholar
  96. 96.
    Bijma R, Girbes AR, Kleijer DJ, Zwaveling JH (1999) Preventing central venous catheter-related infection in a surgical intensive-care unit. Infect Control Hosp Epidemiol 20:618–620, doi: 10.1086/501682 PubMedGoogle Scholar
  97. 97.
    Praevention Gerfaesskatheter-assoziierter Infektionen -Empfehlungen der Kommission fuer Krankenhaushygiene und Infektionspraevention beim Robert-Koch-Institut (RKI) (2002) Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 45:907–924 doi: 10.1007/s00103-002-0499-8 Google Scholar
  98. 98.
    Raad I, Hanna HA, Awad A, Alrahwan A, Bivins C, Khan A et al (2001) Optimal frequency of changing intravenous administration sets: is it safe to prolong use beyond 72 hours? Infect Control Hosp Epidemiol 22:136–139, doi: 10.1086/501879 PubMedGoogle Scholar
  99. 99.
    Maki DG, Botticelli JT, LeRoy ML, Thielke TS (1987) Prospective study of replacing administration sets for intravenous therapy at 48- vs. 72-hour intervals. 72 hours is safe and cost-effective. JAMA 258:1777–1781, doi: 10.1001/jama.258.13.1777 PubMedGoogle Scholar
  100. 100.
    Matlow AG, Kitai I, Kirpalani H, Chapman NH, Corey M, Perlman M et al (1999) A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 20:487–493, doi: 10.1086/501657 PubMedGoogle Scholar
  101. 101.
    Jarvis WR, Highsmith AK (1984) Bacterial growth and endotoxin production in lipid emulsion. J Clin Microbiol 19:17–20PubMedGoogle Scholar
  102. 102.
    Bundesaerztekammer (2005) Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Haemotherapie), Novelle 2005. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47:207 doi: 10.1007/s00103-003-0784-1 Google Scholar
  103. 103.
    Mermel LA (2000) Prevention of intravascular catheter-related infections. Ann Intern Med 132:391–402PubMedGoogle Scholar
  104. 104.
    Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD (1999) Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 281:261–267, doi: 10.1001/jama.281.3.261 PubMedGoogle Scholar
  105. 105.
    Darouiche RO, Raad II, Heard SO, Thornby JL, Wenker OC, Gabrielli A et al (1999) A comparison of two antimicrobial- impregnated central venous catheters. N Engl J Med 340:1–8, doi: 10.1056/NEJM199901073400101 PubMedGoogle Scholar
  106. 106.
    Yucel N, Lefering R, Maegele M, Max M, Rossaint R, Koch A et al (2004) Reduced colonization and infection with minocycline-rifampicin modified central venous catheters: a randomized controlled clinical trial. J Antimicrob Chemother 54:1109–1115, doi: 10.1093/jac/dkh483 PubMedGoogle Scholar
  107. 107.
    Leon C, Ruiz-Santana S, Rello J, de la Torre MV, Valles J, Alvarez-Lerma F, Sierra R, Saavedra P, Alvarez-Salgado F (2004) Benefits of minocycline and rifampin-impregnated central venous catheters. A prospective, randomized, double-blind, controlled, multicenter trial. Intensive Care Med 30:1891–1899, doi: 10.1007/s00134-004-2378-2 PubMedGoogle Scholar
  108. 108.
    Ostendorf T, Meinhold A, Harter C, Salwender H, Egerer G, Geiss HK et al (2005) Chlorhexidine and silver-sulfadiazine coated central venous catheters in haematological patients—a double-blind, randomised, prospective, controlled trial. Support Care Cancer 13:993–1000, doi: 10.1007/s00520-005-0812-9 PubMedGoogle Scholar
  109. 109.
    Hanna H, Benjamin R, Chatzinikolaou I, Alakech B, Richardson D, Mansfield P et al (2004) Long-term silicone central venous catheters impregnated with minocycline and rifampin decrease rates of catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J Clin Oncol 22:3163–3171, doi: 10.1200/JCO.2004.04.124 PubMedGoogle Scholar
  110. 110.
    Richards MJ, Edwards JR, Culver DH, Gaynes RP (1998) Nosocomial infections in coronary care units in the United Sates. National Nosocomial Infections Surveillance System. Am J Cardiol 82:789–793, doi: 10.1016/S0002-9149(98)00450-0 PubMedGoogle Scholar
  111. 111.
    Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887–892, doi: 10.1097/00003246-199905000-00020 PubMedGoogle Scholar
  112. 112.
    CDC (1992) CfDCaP. Update: changes in notifiable disaese surveillance data—United States 1992. Morb Mortal Wkly Rep 41:783–787Google Scholar
  113. 113.
    CDC (2000) CfDCaP. Information needs and uses of the public health workforce: Washington 1997–1998. Morb Mortal Wkly Rep 49:118–120Google Scholar
  114. 114.
    Eggimann P, Pittet D (2001) Infection control in the ICU. Chest 120:2059–2093, doi: 10.1378/chest.120.6.2059 PubMedGoogle Scholar
  115. 115.
    Henrickson KJ, Axtell RA, Hoover SM, Kuhn SM, Prittchett J, Kehl SC et al (2000) Prevention of central venous catheter related infections and thrombotic events in immunocompromised children by the use of vancomycin/ciprofloxacin/heparin flush solution: a randomized, multicenter, double-blind trial. JCO 18:1269–1278Google Scholar
  116. 116.
    Carratala J, Niubo J, Fernandez-Sevilla A, Juve E, Castellsaque X, Berlanga J et al (1999) Randomized, double-blind trial of an antibiotic lock technique for prevention of gram-positive central venous catheter-related infection in neutropenic patients with cancer. Antimicrob Agents Chemother 43:2200–2204PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hans-Heinrich Wolf
    • 1
    Email author
  • Malte Leithäuser
    • 2
  • Georg Maschmeyer
    • 3
  • Hans Salwender
    • 4
  • Ulrike Klein
    • 5
  • Iris Chaberny
    • 6
  • Florian Weissinger
    • 7
  • Dieter Buchheidt
    • 8
  • Markus Ruhnke
    • 9
  • Gerlinde Egerer
    • 5
  • Oliver Cornely
    • 10
  • Gerd Fätkenheuer
    • 10
  • Sabine Mousset
    • 11
  1. 1.Klinik für Innere Medizin IV, Onkologie, Hämatologie und HämostaseologieMartin-Luther-Universität HalleHalleGermany
  2. 2.Abteilung für Hämatologie und Onkologie, Klinik für Innere MedizinUniversität RostockRostockGermany
  3. 3.Medizinische Klinik, Hämatologie/OnkologieKlinikum Ernst-von-BergmannPotsdamGermany
  4. 4.Abt. Hämatologie und Internistische OnkologieAsklepios Klinik Hamburg AltonaHamburgGermany
  5. 5.Klinik für Innere Medizin V, Hämatologie, Onkologie und RheumatologieRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  6. 6.Medizinische Mikrobiologie und KrankenhausepidemiologieMedizinische Hochschule HannoverHannoverGermany
  7. 7.Department of Hematology, Oncology, Palliative CareEvangelisches KrankenhausBielefeldGermany
  8. 8.Universitätsklinikum Heidelberg-MannheimIII. Medizinische KlinikMannheimGermany
  9. 9.Medizinische Klinik mit Schwerpunkt Hämatologie und OnkologieCharité Campus Virchow-Klinikum MitteBerlinGermany
  10. 10.Klinik I für Innere MedizinKlinikum der Universität zu KölnCologneGermany
  11. 11.Medizinische Klinik IIIJohann-Wolfgang-Goethe-UniversitätFrankfurt/MGermany

Personalised recommendations