Skip to main content

Advertisement

Log in

Myelodysplastic syndromes: molecular pathogenesis and genomic changes

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis presenting with peripheral cytopenias in combination with a hyperplastic bone marrow and an increased risk of evolution to acute myeloid leukemia. The classification systems such as the WHO classification mainly rely on morphological criteria and are supplemented by the International Prognostic Scoring System which takes cytogenetical changes into consideration when determining the prognosis of MDS but wide intra-subtype variations do exist. The pathomechanisms causing primary MDS require further work. Development and progression of MDS is suggested to be a multistep alteration to hematopoietic stem cells. Different molecular alterations have been described, affecting genes involved in cell-cycle control, mitotic checkpoints, and growth factor receptors. Secondary signal proteins and transcription factors, which gives the cell a growth advantage over its normal counterpart, may be affected as well. The accumulation of such defects may finally cause the leukemic transformation of MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Germing U, Strupp C, Kundgen A et al (2004) No increase in age-specific incidence of myelodysplastic syndromes. Haematologica 89:905–910

    PubMed  Google Scholar 

  2. Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122:135–140

    Article  PubMed  CAS  Google Scholar 

  3. Haase D, Germing U, Schanz J et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395

    Article  PubMed  CAS  Google Scholar 

  4. Krug U, Ganser A, Koeffler HP (2002) Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21:3475–3495

    Article  PubMed  CAS  Google Scholar 

  5. Chen Z, Sandberg AA (2002) Molecular cytogenetic aspects of hematological malignancies: clinical implications. Am J Med Genet 115:130–141

    Article  PubMed  Google Scholar 

  6. Hirai H (2002) Molecular pathogenesis of MDS. Int J Hematol 76(Suppl 2):213–221

    Article  PubMed  Google Scholar 

  7. List A, Dewald G, Bennett J et al (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355:1456–1465

    Article  PubMed  CAS  Google Scholar 

  8. Pellagatti A, Jadersten M, Forsblom AM et al (2007) Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci U S A 104:11406–11411

    Article  PubMed  CAS  Google Scholar 

  9. Lehmann S, O’Kelly J, Raynaud S et al (2007) Common deleted genes in the 5q- syndrome: thrombocytopenia and reduced erythroid colony formation in SPARC null mice. Leukemia 21:1931–1936

    Article  PubMed  CAS  Google Scholar 

  10. Ferraro B, Bepler G, Sharma S, Cantor A, Haura EB (2005) EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J Clin Oncol 23:1921–1926

    Article  PubMed  CAS  Google Scholar 

  11. Ronski K, Sanders M, Burleson JA et al (2005) Early growth response gene 1 (EGR1) is deleted in estrogen receptor-negative human breast carcinoma. Cancer 104:925–930

    Article  PubMed  CAS  Google Scholar 

  12. Krones-Herzig A, Mittal S, Yule K et al (2005) Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res 65:5133–5143

    Article  PubMed  CAS  Google Scholar 

  13. Joslin JM, Fernald AA, Tennant TR et al (2007) Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 110:719–726

    Article  PubMed  CAS  Google Scholar 

  14. Liu TX, Becker MW, Jelinek J et al (2007) Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 13:78–83

    Article  PubMed  CAS  Google Scholar 

  15. Ebert BL, Pretz J, Bosco J et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451:335–339

    Article  PubMed  CAS  Google Scholar 

  16. Gregorio-King CC, Collier GR, McMillan JS et al (2001) ORP-3, a human oxysterol-binding protein gene differentially expressed in hematopoietic cells. Blood 98:2279–2281

    Article  PubMed  CAS  Google Scholar 

  17. Lehto M, Mayranpaa MI, Pellinen T et al (2008) The R-Ras interaction partner ORP3 regulates cell adhesion. J Cell Sci 121:695–705

    Article  PubMed  CAS  Google Scholar 

  18. Heinrichs S, Berman JN, Ortiz TM et al (2005) CD34+ cell selection is required to assess HOXA9 expression levels in patients with myelodysplastic syndrome. Br J Haematol 130:83–86

    Article  PubMed  CAS  Google Scholar 

  19. Bei L, Lu Y, Eklund EA (2005) HOXA9 activates transcription of the gene encoding gp91Phox during myeloid differentiation. J Biol Chem 280:12359–12370

    Article  PubMed  CAS  Google Scholar 

  20. Hatano Y, Miura I, Nakamura T et al (1999) Molecular heterogeneity of the NUP98/HOXA9 fusion transcript in myelodysplastic syndromes associated with t(7;11)(p15;p15). Br J Haematol 107:600–604

    Article  PubMed  CAS  Google Scholar 

  21. Roulston D, Espinosa R III, Stoffel M, Bell GI, Le Beau MM (1993) Molecular genetics of myeloid leukemia: identification of the commonly deleted segment of chromosome 20. Blood 82:3424–3429

    PubMed  CAS  Google Scholar 

  22. Bench AJ, Nacheva EP, Hood TL et al (2000) Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK Cancer Cytogenetics Group (UKCCG). Oncogene 19:3902–3913

    Article  PubMed  CAS  Google Scholar 

  23. Douet-Guilbert N, Basinko A, Morel F et al (2008) Chromosome 20 deletions in myelodysplastic syndromes and Philadelphia-chromosome-negative myeloproliferative disorders: characterization by molecular cytogenetics of commonly deleted and retained regions. Ann Hematol 87(7):537–544

    Article  PubMed  CAS  Google Scholar 

  24. Saberwal G, Lucas S, Janssen I et al (2004) Increased levels and activity of E2F1 transcription factor in myelodysplastic bone marrow. Int J Hematol 80:146–154

    Article  PubMed  CAS  Google Scholar 

  25. Saberwal G, Broderick E, Janssen I et al (2003) Involvement of cyclin D1 and E2F1 in intramedullary apoptosis in myelodysplastic syndromes. J Hematother Stem Cell Res 12:443–450

    Article  PubMed  CAS  Google Scholar 

  26. Gery S, Gombart AF, Fung YK, Koeffler HP (2004) C/EBPepsilon interacts with retinoblastoma and E2F1 during granulopoiesis. Blood 103:828–835

    Article  PubMed  CAS  Google Scholar 

  27. Beaupre DM, Kurzrock R (1999) RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 17:1071–1079

    PubMed  CAS  Google Scholar 

  28. Paquette RL, Landaw EM, Pierre RV et al (1993) N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood 82:590–599

    PubMed  CAS  Google Scholar 

  29. Basu TN, Gutmann DH, Fletcher JA et al (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:713–715

    Article  PubMed  CAS  Google Scholar 

  30. Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    PubMed  CAS  Google Scholar 

  31. James C, Ugo V, Le Couedic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  32. Jones AV, Kreil S, Zoi K et al (2005) Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106:2162–2168

    Article  PubMed  CAS  Google Scholar 

  33. Renneville A, Quesnel B, Charpentier A et al (2006) High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia 20:2067–2070

    Article  PubMed  CAS  Google Scholar 

  34. Szpurka H, Tiu R, Murugesan G et al (2006) Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. Blood 108:2173–2181

    Article  PubMed  CAS  Google Scholar 

  35. Boissinot M, Garand R, Hamidou M, Hermouet S (2006) The JAK2-V617F mutation and essential thrombocythemia features in a subset of patients with refractory anemia with ring sideroblasts (RARS). Blood 108:1781–1782

    Article  PubMed  CAS  Google Scholar 

  36. Ingram W, Lea NC, Cervera J et al (2006) The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukemia 20:1319–1321

    Article  PubMed  CAS  Google Scholar 

  37. Remacha AF, Nomdedeu JF, Puget G et al (2006) Occurrence of the JAK2 V617F mutation in the WHO provisional entity: myelodysplastic/myeloproliferative disease, unclassifiable-refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica 91:719–720

    PubMed  Google Scholar 

  38. Wang SA, Hasserjian RP, Loew JM et al (2006) Refractory anemia with ringed sideroblasts associated with marked thrombocytosis harbors JAK2 mutation and shows overlapping myeloproliferative and myelodysplastic features. Leukemia 20:1641–1644

    Article  PubMed  CAS  Google Scholar 

  39. Zipperer E, Wulfert M, Germing U, Haas R, Gattermann N (2008) MPL 515 and JAK2 mutation analysis in MDS presenting with a platelet count of more than 500 x 10(9)/l. Ann Hematol 87:413–415

    Article  PubMed  CAS  Google Scholar 

  40. Kottaridis PD, Gale RE, Frew ME et al (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98:1752–1759

    Article  PubMed  CAS  Google Scholar 

  41. Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  PubMed  CAS  Google Scholar 

  42. Georgiou G, Karali V, Zouvelou C et al (2006) Serial determination of FLT3 mutations in myelodysplastic syndrome patients at diagnosis, follow up or acute myeloid leukaemia transformation: incidence and their prognostic significance. Br J Haematol 134:302–306

    Article  PubMed  CAS  Google Scholar 

  43. Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 92:744–752

    Article  PubMed  CAS  Google Scholar 

  44. Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6:493–505

    Article  PubMed  CAS  Google Scholar 

  45. Falini B, Mecucci C, Tiacci E et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266

    Article  PubMed  CAS  Google Scholar 

  46. Sportoletti P, Grisendi S, Majid SM et al (2008) Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 111:3859–3862

    Google Scholar 

  47. Zhang Y, Zhang M, Yang L, Xiao Z (2007) NPM1 mutations in myelodysplastic syndromes and acute myeloid leukemia with normal karyotype. Leuk Res 31:109–111

    Article  PubMed  CAS  Google Scholar 

  48. Thiede C, Koch S, Creutzig E et al (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107:4011–4020

    Article  PubMed  CAS  Google Scholar 

  49. Shiseki M, Kitagawa Y, Wang YH et al (2007) Lack of nucleophosmin mutation in patients with myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities. Leuk Lymphoma 48:2141–2144

    Article  PubMed  CAS  Google Scholar 

  50. Boehrer S, Ades L, Braun T et al (2008) Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 111:2170–2180

    Article  PubMed  CAS  Google Scholar 

  51. Ichikawa M, Asai T, Chiba S, Kurokawa M, Ogawa S (2004) Runx1/AML-1 ranks as a master regulator of adult hematopoiesis. Cell Cycle 3:722–724

    PubMed  CAS  Google Scholar 

  52. Harada H, Harada Y, Niimi H et al (2004) High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103:2316–2324

    Article  PubMed  CAS  Google Scholar 

  53. Kitabayashi I, Yokoyama A, Shimizu K, Ohki M (1998) Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J 17:2994–3004

    Article  PubMed  CAS  Google Scholar 

  54. Ohashi H, Tsushita K, Utsumi M et al (2001) Relationship between methylation of the p15 gene and ectopic expression of the EVI-1 gene in myelodysplastic syndromes (MDS). Leukemia 15:990–991

    Article  PubMed  CAS  Google Scholar 

  55. Nucifora G, Laricchia-Robbio L, Senyuk V (2006) EVI1 and hematopoietic disorders: history and perspectives. Gene 368:1–11

    Article  PubMed  CAS  Google Scholar 

  56. Russell M, List A, Greenberg P et al (1994) Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood 84:1243–1248

    PubMed  CAS  Google Scholar 

  57. Zoccola D, Legros L, Cassuto P et al (2003) A discriminating screening is necessary to ascertain EVI1 expression by RT-PCR in malignant cells from the myeloid lineage without 3q26 rearrangement. Leukemia 17:643–645

    Article  PubMed  CAS  Google Scholar 

  58. Raza A, Buonamici S, Lisak L et al (2004) Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 28:791–803

    Article  PubMed  CAS  Google Scholar 

  59. Morishita K, Parganas E, William CL et al (1992) Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A 89:3937–3941

    Article  PubMed  CAS  Google Scholar 

  60. Buonamici S, Li D, Chi Y et al (2004) EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 114:713–719

    PubMed  CAS  Google Scholar 

  61. Ikonomi P, Rivera CE, Riordan M et al (2000) Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp Hematol 28:1423–1431

    Article  PubMed  CAS  Google Scholar 

  62. Sitailo S, Sood R, Barton K, Nucifora G (1999) Forced expression of the leukemia-associated gene EVI1 in ES cells: a model for myeloid leukemia with 3q26 rearrangements. Leukemia 13:1639–1645

    Article  PubMed  CAS  Google Scholar 

  63. Laricchia-Robbio L, Fazzina R, Li D et al (2006) Point mutations in two EVI1 Zn fingers abolish EVI1-GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol 26:7658–7666

    Article  PubMed  CAS  Google Scholar 

  64. Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G (2001) Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles. J Biol Chem 276:44936–44943

    Article  PubMed  CAS  Google Scholar 

  65. Liu Y, Chen L, Ko TC, Fields AP, Thompson EA (2006) Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene 25:3565–3575

    Article  PubMed  CAS  Google Scholar 

  66. Lai JL, Preudhomme C, Zandecki M et al (1995) Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia 9:370–381

    PubMed  CAS  Google Scholar 

  67. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  PubMed  CAS  Google Scholar 

  68. Nakamaki T, Bartram C, Seriu T et al (1997) Molecular analysis of the cyclin-dependent kinase inhibitor genes, p15, p16, p18 and p19 in the myelodysplastic syndromes. Leuk Res 21:235–240

    Article  PubMed  CAS  Google Scholar 

  69. Quesnel B, Guillerm G, Vereecque R et al (1998) Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 91:2985–2990

    PubMed  CAS  Google Scholar 

  70. Uchida T, Kinoshita T, Nagai H et al (1997) Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood 90:1403–1409

    PubMed  CAS  Google Scholar 

  71. Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P (2006) Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 76:23–32

    Article  PubMed  CAS  Google Scholar 

  72. Hopfer O, Komor M, Koehler IS et al (2007) DNA methylation profiling of myelodysplastic syndrome hematopoietic progenitor cells during in vitro lineage-specific differentiation. Exp Hematol 35:712–723

    Article  PubMed  CAS  Google Scholar 

  73. Silverman LR, Demakos EP, Peterson BL et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    Article  PubMed  CAS  Google Scholar 

  74. Daskalakis M, Nguyen TT, Nguyen C et al (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964

    Article  PubMed  CAS  Google Scholar 

  75. Fenrick R, Hiebert SW (1998) Role of histone deacetylases in acute leukemia. J Cell Biochem Suppl 30–31:194–202

    Google Scholar 

  76. Kuendgen A, Strupp C, Aivado M et al (2004) Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 104:1266–1269

    Article  PubMed  CAS  Google Scholar 

  77. Kuendgen A, Knipp S, Fox F et al (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(Suppl 1):61–66

    Article  PubMed  CAS  Google Scholar 

  78. Cheson BD, Bennett JM, Kantarjian H et al (2000) Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood 96:3671–3674

    PubMed  CAS  Google Scholar 

  79. Blum W, Klisovic RB, Hackanson B et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25:3884–3891

    Article  PubMed  CAS  Google Scholar 

  80. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B et al (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279

    Article  PubMed  CAS  Google Scholar 

  81. Gattermann N, Retzlaff S, Wang YL et al (1996) A heteroplasmic point mutation of mitochondrial tRNALeu(CUN) in non-lymphoid haemopoietic cell lineages from a patient with acquired idiopathic sideroblastic anaemia. Br J Haematol 93:845–855

    Article  PubMed  CAS  Google Scholar 

  82. Gattermann N, Retzlaff S, Wang YL et al (1997) Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 90:4961–4972

    PubMed  CAS  Google Scholar 

  83. Gattermann N, Wulfert M, Junge B et al (2004) Ineffective hematopoiesis linked with a mitochondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome. Blood 103:1499–1502

    Article  PubMed  CAS  Google Scholar 

  84. Reddy PL, Shetty VT, Dutt D et al (2002) Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes. Br J Haematol 116:564–575

    Article  PubMed  CAS  Google Scholar 

  85. Shin MG, Kajigaya S, Levin BC, Young NS (2003) Mitochondrial DNA mutations in patients with myelodysplastic syndromes. Blood 101:3118–3125

    Article  PubMed  CAS  Google Scholar 

  86. Rieger K, Marinets O, Fietz T et al (2005) Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp Hematol 33:605–611

    Article  PubMed  CAS  Google Scholar 

  87. Awaya N, Rupert K, Bryant E, Torok-Storb B (2002) Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol 30:937–942

    Article  PubMed  Google Scholar 

  88. Soenen-Cornu V, Tourino C, Bonnet ML et al (2005) Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene 24:2441–2448

    Article  PubMed  CAS  Google Scholar 

  89. Alvi S, Shaher A, Shetty V et al (2001) Successful establishment of long-term bone marrow cultures in 103 patients with myelodysplastic syndromes. Leuk Res 25:941–954

    Article  PubMed  CAS  Google Scholar 

  90. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432

    Article  PubMed  CAS  Google Scholar 

  91. Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, Arana-Trejo RM, Mayani H (2002) In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 26:677–686

    Article  PubMed  CAS  Google Scholar 

  92. Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G, Perez-Cabrera A, Mayani H (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29:215–224

    Article  PubMed  CAS  Google Scholar 

  93. Blau O, Hofmann WK, Baldus CD et al (2007) Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 35:221–229

    Article  PubMed  CAS  Google Scholar 

  94. Aguayo A, Kantarjian H, Manshouri T et al (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96:2240–2245

    PubMed  CAS  Google Scholar 

  95. Keith T, Araki Y, Ohyagi M et al (2007) Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia. Br J Haematol 137:206–215

    Article  PubMed  CAS  Google Scholar 

  96. Stifter G, Heiss S, Gastl G, Tzankov A, Stauder R (2005) Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis. Eur J Haematol 75:485–491

    Article  PubMed  CAS  Google Scholar 

  97. Campioni D, Punturieri M, Bardi A et al (2004) “In vitro” evaluation of bone marrow angiogenesis in myelodysplastic syndromes: a morphological and functional approach. Leuk Res 28:9–17

    Article  PubMed  Google Scholar 

  98. Raza A, Candoni A, Khan U et al (2004) Remicade as TNF suppressor in patients with myelodysplastic syndromes. Leuk Lymphoma 45:2099–2104

    Article  PubMed  CAS  Google Scholar 

  99. Stasi R, Amadori S (2002) Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes. Br J Haematol 116:334–337

    PubMed  CAS  Google Scholar 

  100. Roboz GJ, Giles FJ, List AF et al (2006) Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 20:952–957

    Article  PubMed  CAS  Google Scholar 

  101. Mohamedali A, Gaken J, Twine NA et al (2007) Prevalence and prognostic significance of allelic imbalance by single nucleotide polymorphism analysis in low risk myelodysplastic syndromes. Blood 110:3365–3373

    Google Scholar 

  102. Hofmann WK, de Vos S, Komor M et al (2002) Characterization of gene expression of CD34 + cells from normal and myelodysplastic bone marrow. Blood 100:3553–3560

    Article  PubMed  CAS  Google Scholar 

  103. Miyazato A, Ueno S, Ohmine K et al (2001) Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 98:422–427

    Article  PubMed  CAS  Google Scholar 

  104. Lee YT, Miller LD, Gubin AN et al (2001) Transcription patterning of uncoupled proliferation and differentiation in myelodysplastic bone marrow with erythroid-focused arrays. Blood 98:1914–1921

    Article  PubMed  CAS  Google Scholar 

  105. Schoch C, Kohlmann A, Schnittger S et al (2002) Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A 99:10008–10013

    Article  PubMed  CAS  Google Scholar 

  106. Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  PubMed  CAS  Google Scholar 

  107. Mauro C, Pacifico F, Lavorgna A et al (2006) ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 281:18482–18488

    Article  PubMed  CAS  Google Scholar 

  108. Zhang S, Fukushi M, Hashimoto S et al (2002) A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling. Biochem Biophys Res Commun 297:17–23

    Article  PubMed  CAS  Google Scholar 

  109. Casas S, Nagy B, Elonen E et al (2003) Aberrant expression of HOXA9, DEK, CBL and CSF1R in acute myeloid leukemia. Leuk Lymphoma 44:1935–1941

    Article  PubMed  CAS  Google Scholar 

  110. Suh ER, Ha CS, Rankin EB, Toyota M, Traber PG (2002) DNA methylation down-regulates CDX1 gene expression in colorectal cancer cell lines. J Biol Chem 277:35795–35800

    Article  PubMed  CAS  Google Scholar 

  111. Grewal T, Evans R, Rentero C et al (2005) Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene 24:5809–5820

    Article  PubMed  CAS  Google Scholar 

  112. Gou D, Wang J, Gao L et al (2004) Identification and functional analysis of a novel human KRAB/C2H2 zinc finger gene ZNF300. Biochim Biophys Acta 1676:203–209

    PubMed  CAS  Google Scholar 

  113. Kaddu S, Zenahlik P, Beham-Schmid C, Kerl H, Cerroni L (1999) Specific cutaneous infiltrates in patients with myelogenous leukemia: a clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol 40:966–978

    Article  PubMed  CAS  Google Scholar 

  114. Wirtenberger M, Tchatchou S, Hemminki K et al (2006) Associations of genetic variants in the estrogen receptor coactivators PPARGC1A, PPARGC1B and EP300 with familial breast cancer. Carcinogenesis 27:2201–2208

    Article  PubMed  CAS  Google Scholar 

  115. Srivastava S, Barrett JN, Moraes CT (2007) PGC-1alpha/beta upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet 16:993–1005

    Article  PubMed  CAS  Google Scholar 

  116. Lierman E, Lahortiga I, Van Miegroet H et al (2007) The ability of sorafenib to inhibit oncogenic PDGFRbeta and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica 92:27–34

    Article  PubMed  CAS  Google Scholar 

  117. Gorello P, La Starza R, Brandimarte L et al (2008) A PDGFRB-positive acute myeloid malignancy with a new t(5;12)(q33;p13.3) involving the ERC1 gene. Leukemia 22:216–218

    Article  PubMed  CAS  Google Scholar 

  118. Tokita K, Maki K, Tadokoro J et al (2007) Chronic idiopathic myelofibrosis expressing a novel type of TEL-PDGFRB chimaera responded to imatinib mesylate therapy. Leukemia 21:190–192

    Article  PubMed  CAS  Google Scholar 

  119. Monma F, Nishii K, Lorenzo F et al (2006) Molecular analysis of PDGFRalpha/beta genes in core binding factor leukemia with eosinophilia. Eur J Haematol 76:18–22

    Article  PubMed  CAS  Google Scholar 

  120. Grand FH, Burgstaller S, Kuhr T et al (2004) p53-Binding protein 1 is fused to the platelet-derived growth factor receptor beta in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res 64:7216–7219

    Article  PubMed  CAS  Google Scholar 

  121. Kulkarni S, Heath C, Parker S et al (2000) Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res 60:3592–3598

    PubMed  CAS  Google Scholar 

  122. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586

    Article  PubMed  CAS  Google Scholar 

  123. Zhao Y, Qin S, Atangan LI et al (2004) Casein kinase 1alpha interacts with retinoid X receptor and interferes with agonist-induced apoptosis. J Biol Chem 279:30844–30849

    Article  PubMed  CAS  Google Scholar 

  124. Itoh S, Kim HW, Nakagawa O et al (2008) Novel role of antioxidant-1 (atox1) as a copper dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    Google Scholar 

  125. Yu YP, Yu G, Tseng G et al (2007) Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res 67:8043–8050

    Article  PubMed  CAS  Google Scholar 

  126. Lee OJ, Schneider-Stock R, McChesney PA et al (2005) Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett's tumorigenesis. Neoplasia 7:854–861

    Article  PubMed  CAS  Google Scholar 

  127. Fuster MM, Wang L, Castagnola J et al (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177:539–549

    Article  PubMed  CAS  Google Scholar 

  128. Yuan K, Chung LW, Siegal GP, Zayzafoon M (2007) alpha-CaMKII controls the growth of human osteosarcoma by regulating cell cycle progression. Lab Invest 87:938–950

    Article  PubMed  CAS  Google Scholar 

  129. Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN (2008) Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol 28(10):3437–3445

    Article  PubMed  CAS  Google Scholar 

  130. Liu AM, Wong YH (2005) Activation of nuclear factor {kappa}B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G{alpha}14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. J Biol Chem 280:34617–34625

    Article  PubMed  CAS  Google Scholar 

  131. McClellan KA, Slack RS (2007) Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6:2917–2927

    PubMed  CAS  Google Scholar 

  132. Black AR, Azizkhan-Clifford J (1999) Regulation of E2F: a family of transcription factors involved in proliferation control. Gene 237:281–302

    Article  PubMed  CAS  Google Scholar 

  133. Mizuno S, Chijiwa T, Okamura T et al (2001) Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97:1172–1179

    Article  PubMed  CAS  Google Scholar 

  134. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204:715–722

    Article  PubMed  CAS  Google Scholar 

  135. Suzuki M, Yamada T, Kihara-Negishi F et al (2006) Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25:2477–2488

    Article  PubMed  CAS  Google Scholar 

  136. Evans R, Naber C, Steffler T et al (2008) Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells. Leuk Lymphoma 49:559–569

    Article  PubMed  CAS  Google Scholar 

  137. Wittmann T, Wilm M, Karsenti E, Vernos I (2000) TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol 149:1405–1418

    Article  PubMed  CAS  Google Scholar 

  138. Eckerdt F, Eyers PA, Lewellyn AL, Prigent C, Maller JL (2008) Spindle pole regulation by a discrete Eg5-interacting domain in TPX2. Curr Biol 18:519–525

    Article  PubMed  CAS  Google Scholar 

  139. Ries C, Loher F, Zang C, Ismair MG, Petrides PE (1999) Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res 5:1115–1124

    PubMed  CAS  Google Scholar 

  140. Travaglino E, Benatti C, Malcovati L et al (2008) Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol 80:216–226

    Article  PubMed  Google Scholar 

  141. LeCouter JE, Kablar B, Hardy WR et al (1998) Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the Rb-related p107 gene. Mol Cell Biol 18:7455–7465

    PubMed  CAS  Google Scholar 

  142. Balciunaite E, Spektor A, Lents NH et al (2005) Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol Cell Biol 25:8166–8178

    Article  PubMed  CAS  Google Scholar 

  143. Clark AJ, Doyle KM, Humbert PO (2004) Cell-intrinsic requirement for pRb in erythropoiesis. Blood 104:1324–1326

    Article  PubMed  CAS  Google Scholar 

  144. Walkley CR, Orkin SH (2006) Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc Natl Acad Sci U S A 103:9057–9062

    Article  PubMed  CAS  Google Scholar 

  145. Allen TC, Granville LA, Cagle PT et al (2007) Expression of glutathione S-transferase pi and glutathione synthase correlates with survival in early stage non-small cell carcinomas of the lung. Hum Pathol 38:220–227

    Article  PubMed  CAS  Google Scholar 

  146. Lu J, Chew EH, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci U S A 104:12288–12293

    Article  PubMed  CAS  Google Scholar 

  147. Fok JY, Ekmekcioglu S, Mehta K (2006) Implications of tissue transglutaminase expression in malignant melanoma. Mol Cancer Ther 5:1493–1503

    Article  PubMed  CAS  Google Scholar 

  148. Ai L, Kim WJ, Demircan B et al (2008) The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis 29:510–518

    Article  PubMed  CAS  Google Scholar 

  149. Horowitz A, Tkachenko E, Simons M (2002) Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol 157:715–725

    Article  PubMed  CAS  Google Scholar 

  150. Chen Q, Sivakumar P, Barley C et al (2007) Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor-beta (TGF-beta) by modulating assembly of latent TGF-beta-binding protein-1. J Biol Chem 282:26418–26430

    Article  PubMed  CAS  Google Scholar 

  151. Gupta P, Oegema TR Jr, Brazil JJ et al (1998) Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood 92:4641–4651

    PubMed  CAS  Google Scholar 

  152. Charnaux N, Brule S, Hamon M et al (2005) Syndecan-4 is a signaling molecule for stromal cell-derived factor-1 (SDF-1)/ CXCL12. FEBS J 272:1937–1951

    Article  PubMed  CAS  Google Scholar 

  153. Drzeniek Z, Stocker G, Siebertz B et al (1999) Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. Blood 93:2884–2897

    PubMed  CAS  Google Scholar 

  154. Chendrimada TP, Finn KJ, Ji X et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    Article  PubMed  CAS  Google Scholar 

  155. Lee SK, Kim HJ, Kim JW, Lee JW (1999) Steroid receptor coactivator-1 and its family members differentially regulate transactivation by the tumor suppressor protein p53. Mol Endocrinol 13:1924–1933

    Article  PubMed  CAS  Google Scholar 

  156. Lutz T, Stoger R, Nieto A (2006) CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis. FEBS Lett 580:5851–5857

    Article  PubMed  CAS  Google Scholar 

  157. Surapureddi S, Yu S, Bu H et al (2002) Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha -interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci U S A 99:11836–11841

    Article  PubMed  CAS  Google Scholar 

  158. Golay J, Broccoli V, Borleri GM et al (1997) Redundant functions of B-Myb and c-Myb in differentiating myeloid cells. Cell Growth Differ 8:1305–1316

    PubMed  CAS  Google Scholar 

  159. Sala A (2005) B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 41:2479–2484

    Article  PubMed  CAS  Google Scholar 

  160. Grassilli E, Salomoni P, Perrotti D, Franceschi C, Calabretta B (1999) Resistance to apoptosis in CTLL-2 cells overexpressing B-Myb is associated with B-Myb-dependent bcl-2 induction. Cancer Res 59:2451–2456

    PubMed  CAS  Google Scholar 

  161. Muller-Tidow C, Wang W, Idos GE et al (2001) Cyclin A1 directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine residues: tissue-specific regulation of B-myb function. Blood 97:2091–2097

    Article  PubMed  CAS  Google Scholar 

  162. Kim YK, Furic L, Parisien M et al (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 26:2670–2681

    Article  PubMed  CAS  Google Scholar 

  163. Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17:318–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Nolte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, F., Hofmann, WK. Myelodysplastic syndromes: molecular pathogenesis and genomic changes. Ann Hematol 87, 777–795 (2008). https://doi.org/10.1007/s00277-008-0502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0502-z

Keywords

Navigation