Annals of Hematology

, Volume 86, Issue 7, pp 471–481 | Cite as

A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells

  • Manchao Zhang
  • Yan Ling
  • Chao-Yie Yang
  • Hongpeng Liu
  • Renxiao Wang
  • Xihan Wu
  • Ke Ding
  • Feng Zhu
  • Brian N. Griffith
  • Ramzi M. Mohammad
  • Shaomeng Wang
  • Dajun Yang
Original Article


A novel small molecule inhibitor, 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB), competes with the Bak BH3 peptide to bind Bcl-2 protein with a binding affinity of IC50 = 0.70 μM, as assessed by a fluorescence polarization based binding assay. HL-60 cells express the highest levels of Bcl-2 among the cell lines examined. Treated with 5 μM of MNB only for 6 h, 85% of HL-60 cells were detected to undergo apoptosis. Pan-caspase inhibitor, Z-VAD-FMK, blocks MNB-induced apoptosis in HL-60 cells. Caspase-2, caspase-3, caspase-7, caspase-8, caspase-9, and PARP activation were observed at as early as 4 to 6 h of MNB treatment. In addition, it has been confirmed that the caspase-3 specific inhibitor, Z-DEVD-FMK, blocks the activation of caspase-8 in MNB-treated HL-60 cells. MNB treatment does not change Bcl-2 or Bax expression level in HL-60 cells, but causes Bid cleavage. Further experiments have illustrated that MNB inhibits the heterodimerization of Bcl-2 with Bax or Bid, reduces the mitochondrial membrane potential (ΔΨmt), and induces cytochrome c release from mitochondria in HL-60 cells. These results suggest that MNB induces apoptosis in HL-60 by inhibiting the heterodimerization of Bcl-2 with pro-apoptosis Bcl-2 members, resulting in a decrease in the mitochondrial membrane potential and cytochrome c release, activation of caspases and PARP; it is a caspase-dependent process in which the activation of caspase-8 is dependent on the mitochondrial apoptosis signal transduction pathway. MNB prolongs the life spans of HL-60 bearing mice, potently kills fresh AML and ALL cells, indicating that it has the potential to be developed to treat leukemia.


Bcl-2 Small molecule Apoptosis Leukemia 



This work was supported in part by Department of Defense. The authors thank Dr. Karen Cresewell of the Lombardi Cancer Center, Georgetown University for operating FACScan and Ms. Karen Kreutzer of the University of Michigan Medical School for proofreading the original manuscript.


  1. 1.
    Haarman EG, Kaspers GJ, Pieters R, van Zantwijk CH, Broekema GJ, Hahlen K, Veerman AJ (1999) BCL-2 expression in childhood leukemia versus spontaneous apoptosis, drug induced apoptosis, and in vitro drug resistance. Adv Exp Med Biol 457:325–333PubMedGoogle Scholar
  2. 2.
    Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S (2005) Apoptosis and immaturity in acute myeloid leukemia. Hematology 10:25–34PubMedCrossRefGoogle Scholar
  3. 3.
    Campos L, Sabido O, Viallet A, Vasselon C, Guyotat D (1999) Expression of apoptosis-controlling proteins in acute leukemia cells. Leuk Lymphoma 33:499–509PubMedGoogle Scholar
  4. 4.
    Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC, Behm FG, Arico M, Campana D (1996) Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87:1140–1146PubMedGoogle Scholar
  5. 5.
    Salomons GS, Smets LA, Verwijs-Janssen M, Hart AA, Haarman EG, Kaspers GJ, Wering EV, Der Does-Van Den Berg AV, Kamps WA (1999) Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome. Leukemia 13:1574–1580PubMedCrossRefGoogle Scholar
  6. 6.
    Klumper E, Pieters R, Veerman AJ, Huismans DR, Loonen AH, Hahlen K, Kaspers GJ, van Wering ER, Hartmann R, Henze G (1995) In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86:3861–3868PubMedGoogle Scholar
  7. 7.
    Majlessipour F, Avramis IA, Kwock R, Weinberg KI, Avrami VI (2002) The combination regimen of idarubicin and taxotere is effective against human drug-resistant leukemic cell lines. Anticancer Res 22:1361–1368PubMedGoogle Scholar
  8. 8.
    Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418PubMedCrossRefGoogle Scholar
  9. 9.
    Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G (1997) Lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in testicular germ cell tumour cell lines. Int J Cancer 73:592–599PubMedCrossRefGoogle Scholar
  10. 10.
    Houldsworth J, Xiao H, Murty VV, Chen W, Ray B, Reuter VE, Bosl GJ, Chaganti RS (1998) Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16:2345–2349PubMedCrossRefGoogle Scholar
  11. 11.
    Campos L, Sabido O, Liang H, Vasselon C, Guyotat D (1996) Expression of human Bcl-xL, an inhibitor of programmed cell death. Nature 33:335–341Google Scholar
  12. 12.
    Holinger EP, Chittenden T, Lutz RJ (1999) Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 274:13298–13304PubMedCrossRefGoogle Scholar
  13. 13.
    Finnegan NM, Curtin JF, Prevost G, Morgan B, Cotter TG (2001) Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions. Br J Cancer 85:115–121PubMedCrossRefGoogle Scholar
  14. 14.
    Shangary S, Johnson DE (2002) Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 41:9485–9495PubMedCrossRefGoogle Scholar
  15. 15.
    Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97:7124–7129PubMedCrossRefGoogle Scholar
  16. 16.
    Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3:173–182PubMedCrossRefGoogle Scholar
  17. 17.
    Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J, Zhang KY, Hockenbery DM (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3:183–191PubMedCrossRefGoogle Scholar
  18. 18.
    Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (2001) Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44:4313–4324PubMedCrossRefGoogle Scholar
  19. 19.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681PubMedCrossRefGoogle Scholar
  20. 20.
    Manion MK, Fry J, Schwartz PS, Hockenbery DM (2006) Small-molecule inhibitors of Bcl-2. Curr Opin Investig Drugs 7:1077–1084PubMedGoogle Scholar
  21. 21.
    Mohammad RM, Mohamed AN, Smith MR, Jawadi NS, al-Katib A (1993) A unique EBV-negative low-grade lymphoma line (WSU-FSCCL) exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet 70:62–67PubMedCrossRefGoogle Scholar
  22. 22.
    Gloeckner H, Jonuleit T, Lemke HD (2001) Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. J Immunol Methods 252:131–138PubMedCrossRefGoogle Scholar
  23. 23.
    Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783PubMedCrossRefGoogle Scholar
  24. 24.
    Hong C, Kim HA, Firestone GL, Bjeldanes LF (2002) 3,3′-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 23:1297–1305PubMedCrossRefGoogle Scholar
  25. 25.
    Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22:2643–2654PubMedCrossRefGoogle Scholar
  26. 26.
    Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A 98:3012–3017PubMedCrossRefGoogle Scholar
  27. 27.
    Ozgen U, Savasan S, Buck S, Ravindranath Y (2000) Comparison of DiOC(6)(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Cytometry 42:74–78PubMedCrossRefGoogle Scholar
  28. 28.
    Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274:17941–17945PubMedCrossRefGoogle Scholar
  29. 29.
    Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5PubMedCrossRefGoogle Scholar
  30. 30.
    Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97:1378–1387PubMedCrossRefGoogle Scholar
  31. 31.
    Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15:1022–1032PubMedCrossRefGoogle Scholar
  32. 32.
    von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22:2236–2247CrossRefGoogle Scholar
  33. 33.
    Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128PubMedCrossRefGoogle Scholar
  34. 34.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136PubMedCrossRefGoogle Scholar
  35. 35.
    Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474PubMedCrossRefGoogle Scholar
  36. 36.
    Lee SH, Ryu SY, Kim HB, Kim MY Chun YJ (2002) Induction of apoptosis by 3,4′-dimethoxy-5-hydroxystilbene in human promyeloid leukemic HL-60 cells. Planta Med 68:123–127PubMedCrossRefGoogle Scholar
  37. 37.
    Kim JH, Ju EM, Lee DK, Hwang HJ (2002) Induction of apoptosis by momordin I in promyelocytic leukemia (HL-60) cells. Anticancer Res 22:1885–1889PubMedGoogle Scholar
  38. 38.
    Hattori T, Ookawa N, Fujita R, Fukuchi K (2000) Heterodimerization of Bcl-2 and Bcl-X(L) with Bax and Bad in colorectal cancer. Acta Oncol 39:495–500PubMedCrossRefGoogle Scholar
  39. 39.
    Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T (1999) NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 274:20415–20420PubMedCrossRefGoogle Scholar
  40. 40.
    St Clair EG, Anderson SJ, Oltvai ZN (1997) Bcl-2 counters apoptosis by Bax heterodimerization-dependent and -independent mechanisms in the T-cell lineage. J Biol Chem 272:29347–29355CrossRefGoogle Scholar
  41. 41.
    Zha H, Aime-Sempe C, Sato T, Reed JC (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440–7444PubMedCrossRefGoogle Scholar
  42. 42.
    Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM (2002) Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia 16:74–83PubMedCrossRefGoogle Scholar
  43. 43.
    Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ, Rega MF, Landshamer S, Reed JC, Plesnila N, Pellecchia M (2006) Structure–activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci U S A 103:12602–12606PubMedCrossRefGoogle Scholar
  44. 44.
    Ward MW, Rehm M, Duessmann H, Kacmar S, Concannon CG, Prehn JH (2006) Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J Biol Chem 281:5837–5844PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar S, Vaux DL (2002) Apoptosis. A cinderella caspase takes center stage. Science 297:1290–1291PubMedCrossRefGoogle Scholar
  46. 46.
    Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354PubMedCrossRefGoogle Scholar
  47. 47.
    Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM, Strasser A (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419:634–637PubMedCrossRefGoogle Scholar
  48. 48.
    Goldie JH, Coldman AJ (1984) The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 44:3643–3653PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Manchao Zhang
    • 1
  • Yan Ling
    • 2
  • Chao-Yie Yang
    • 3
  • Hongpeng Liu
    • 3
  • Renxiao Wang
    • 3
  • Xihan Wu
    • 3
  • Ke Ding
    • 3
  • Feng Zhu
    • 2
  • Brian N. Griffith
    • 4
  • Ramzi M. Mohammad
    • 5
  • Shaomeng Wang
    • 3
  • Dajun Yang
    • 3
  1. 1.Department of BiochemistryWest Virginia UniversityMorgantownUSA
  2. 2.Lombardi Cancer CenterGeorgetown University Medical CenterWashingtonUSA
  3. 3.University of Michigan Medical SchoolAnn ArborUSA
  4. 4.West Virginia School of Osteopathic MedicineLewisburgUSA
  5. 5.Karmanos Cancer InstituteWayne State UniversityDetroitUSA

Personalised recommendations