Annals of Hematology

, Volume 86, Issue 4, pp 245–253

Different involvement of the megakaryocytic lineage by the JAK2V617F mutation in Polycythemia vera, essential thrombocythemia and chronic idiopathic myelofibrosis

  • Kais Hussein
  • Kai Brakensiek
  • Guntram Buesche
  • Thomas Buhr
  • Birgitt Wiese
  • Hans Kreipe
  • Oliver Bock
Original Article

Abstract

Atypical megakaryocytes provide the histomorphological hallmark of all Philadelphia-chromosome negative chronic myeloproliferative disorder (Ph CMPD) subtypes and have not been studied so far for the JAK2V617F mutation. The mutant gene dosage was determined in isolated megakaryocytes from 68 cases of JAK2+/Ph CMPD by a pyrosequencing assay. Megakaryocytes from essential thrombocythemia (ET) showed significantly lower levels of mutated JAK2 alleles compared to patients with chronic idiopathic myelofibrosis (cIMF) with manifest fibrosis and polycythemia vera (PV) but not to prefibrotic cIMF. Solely, ET JAK2V617F in megakaryocytes is associated with a PV-like phenotype, and at least in one patient, the JAK2 mutation was exclusively acquired within the megakaryocytic lineage. The overt differences between prefibrotic and fibrotic cIMF suggested a causative role of the gene dosage of mutant JAK2 in fibrotic progression. Megakaryocyte analysis of a follow-up of eight individual cases with sequential biopsies, however, showed that progression to homozygosity of V617F mutated JAK2 and onset of manifest fibrosis appeared to be independent events. We conclude that megakaryocytes might be the predominant or even the exclusive lineage that acquires the JAK2V617F mutation in ET and that the JAK2V617F evolution to higher gene dosages represents a dynamic and complex process substantially involving megakaryocytes.

Keywords

Megakaryocytes Laser microdissection JAK2 V617F mutation Philadelphia-chromosome negative chronic myeloproliferative disorders 

References

  1. 1.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR, Cancer Genome Project (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061PubMedGoogle Scholar
  2. 2.
    James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148PubMedCrossRefGoogle Scholar
  3. 3.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Frohling S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397PubMedCrossRefGoogle Scholar
  4. 4.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790PubMedCrossRefGoogle Scholar
  5. 5.
    Campbell PJ, Griesshammer M, Dohner K, Dohner H, Kusec R, Hasselbalch HC, Larsen TS, Pallisgaard N, Giraudier S, Le Bousse-Kerdiles MC, Desterke C, Guerton B, Dupriez B, Bordessoule D, Fenaux P, Kiladjian JJ, Viallard JF, Briere J, Harrison CN, Green AR, Reilly JT (2006) The V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 107:2098–2100PubMedCrossRefGoogle Scholar
  6. 6.
    Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH, White H, Zoi C, Loukopoulos D, Terpos E, Vervessou EC, Schultheis B, Emig M, Ernst T, Lengfelder E, Hehlmann R, Hochhaus A, Oscier D, Silver RT, Reiter A, Cross NC (2005) Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106:2162–2168PubMedCrossRefGoogle Scholar
  7. 7.
    Tefferi A (2005) Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol 23:8520–8530PubMedCrossRefGoogle Scholar
  8. 8.
    Le Bousse-Kerdiles MC, Martyre MC (1999) Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis. Ann Hematol 78:437–444PubMedCrossRefGoogle Scholar
  9. 9.
    Buhr T, Büsche G, Choritz H, Länger F, Kreipe H (2003) Evolution of myelofibrosis in chronic idiopathic myelofibrosis as evidenced in sequential bone marrow biopsy specimens. Am J Clin Pathol 119:152–158PubMedCrossRefGoogle Scholar
  10. 10.
    Thiele J, Kvasnicka HM (2004) Prefibrotic chronic idiopathic myelofibrosis—a diagnostic enigma? Acta Haematol 111:155–159PubMedCrossRefGoogle Scholar
  11. 11.
    Bock O, Schlue J, Mengel M, Buesche G, Serinsoez E, Kreipe H (2004) Thrombopoietin receptor (Mpl) expression by megakaryocytes in myeloproliferative disorders. J Pathol 203:609–615PubMedCrossRefGoogle Scholar
  12. 12.
    Lehmann U, Kreipe H (2001) Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25:409–418PubMedCrossRefGoogle Scholar
  13. 13.
    Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S, Beran M, Estey E, Kantarjian HM, Issa JP (2005) JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 106:3370–3373PubMedCrossRefGoogle Scholar
  14. 14.
    Bock O, Buesche G, Koop C, Schroeter S, Buhr T, Kreipe H (2006) Detection of the single hotspot mutation in the pseudokinase domain JH2 of Janus kinase 2 (JAK2) in bone marrow trephine biopsies from chronic myeloproliferative disorders. J Mol Diagnostics 8:170–177Google Scholar
  15. 15.
    Tefferi A, Lasho TL, Gilliland G (2005) JAK2 mutations in myeloproliferative disorders. N Engl J Med 353:1416–1417PubMedCrossRefGoogle Scholar
  16. 16.
    Wolanskyj AP, Lasho TL, Schwager SM, McClure RF, Wadleigh M, Lee SJ, Gilliland DG, Tefferi A (2005) JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol 131:208–213PubMedCrossRefGoogle Scholar
  17. 17.
    Horn T, Kremer M, Dechow T, Pfeifer WM, Geist B, Perker M, Duyster J, Quintanilla-Martinez L, Fend F (2006) Detection of the activating JAK2 V617F mutation in paraffin-embedded trephine bone marrow biopsies of patients with chronic myeloproliferative diseases. J Mol Diagnostics 8:299–304CrossRefGoogle Scholar
  18. 18.
    Florensa L, Bellosillo B, Besses C, Puigdecanet E, Espinet B, Perez-Vila E, Longaron R, Vila RM, Sole F, Serrano S (2006) JAK2 V617F mutation analysis in different myeloid lineages (granulocytes, platelets, CFU-MK, BFU-E and CFU-GM) in essential thrombocythemia patients. Leukemia 20:1903–1905PubMedCrossRefGoogle Scholar
  19. 19.
    Fakhrai-Rad H, Pourmand N, Ronaghi M (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Human Mutat 19:479–485CrossRefGoogle Scholar
  20. 20.
    Kiladjian JJ, Elkassar N, Cassinat B, Hetet G, Giraudier S, Balitrand N, Conejero C, Briere J, Fenaux P, Chomienne C, Grandchamp B (2006) Essential thrombocythemias without V617F JAK2 mutation are clonal hematopoietic stem cell disorders. Leukemia 20:1181–1183PubMedCrossRefGoogle Scholar
  21. 21.
    Zehentner BK, Loken MR, Wells DA (2006) JAK2(V617F) mutation can occur exclusively in the erythroid lineage and be absent in granulocytes and progenitor cells in classic myeloproliferative disorders. Am J Hematol 81:806–807PubMedCrossRefGoogle Scholar
  22. 22.
    Bock O, Neuse J, Hussein K, Brakensiek K, Buesche G, Buhr T, Wiese B, Kreipe H (2006) Aberrant collagenase expression in chronic idiopathic myelofibrosis is related to the stage of disease but not to the JAK2 mutation status. Am J Pathol 169:471–481PubMedCrossRefGoogle Scholar
  23. 23.
    Tefferi A, Lasho TL, Schwager SM, Steensma DP, Mesa RA, Li CY, Wadleigh M, Gary Gilliland D (2005) The JAK2(V617F) tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br J Haematol 131:320–328PubMedCrossRefGoogle Scholar
  24. 24.
    Mesa RA, Powell H, Lasho T, DeWald GW, McClure R, Tefferi A (2005) A longitudinal study of the JAK2 (V617F) mutation in myelofibrosis with myeloid metaplasia: analysis at two time points. Haematologica 91:415–416Google Scholar
  25. 25.
    Yip SF, So CC, Chan AY, Liu HY, Wan TK, Chan LC (2006) The lack of association between JAK2 V617F mutation and myelodysplastic syndrome with or without myelofibrosis. Leukemia 20:1165PubMedCrossRefGoogle Scholar
  26. 26.
    Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S, Menot ML, Massonnet G, Dutel JL, Ghomari K, Rousselot P, Grange MJ, Chait Y, Vainchenker W, Parquet N, Abdelkader-Aljassem L, Bernard JF, Rain JD, Chevret S, Chomienne C, Fenaux P (2006) High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 108:2037–2040PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kais Hussein
    • 1
  • Kai Brakensiek
    • 1
  • Guntram Buesche
    • 1
  • Thomas Buhr
    • 1
  • Birgitt Wiese
    • 2
  • Hans Kreipe
    • 1
  • Oliver Bock
    • 1
  1. 1.Institute of PathologyHannover Medical SchoolHannoverGermany
  2. 2.Institute of BiometricsHannover Medical SchoolHannoverGermany

Personalised recommendations