Annals of Hematology

, Volume 84, Issue 10, pp 627–639 | Cite as

Apoptosis: mechanisms and relevance in cancer

  • Katrien Vermeulen
  • Dirk R. Van Bockstaele
  • Zwi N. BernemanEmail author
Review Article


Apoptosis or programmed cell death is a process with typical morphological characteristics including plasma membrane blebbing, cell shrinkage, chromatin condensation and fragmentation. A family of cystein-dependent aspartate-directed proteases, called caspases, is responsible for the proteolytic cleavage of cellular proteins leading to the characteristic apoptotic features, e.g. cleavage of caspase-activated DNase resulting in internucleosomal DNA fragmentation. Currently, two pathways for activating caspases have been studied in detail. One starts with ligation of a death ligand to its transmembrane death receptor, followed by recruitment and activation of caspases in the death-inducing signalling complex. The second pathway involves the participation of mitochondria, which release caspase-activating proteins into the cytosol, thereby forming the apoptosome where caspases will bind and become activated. In addition, two other apoptotic pathways are emerging: endoplasmic reticulum stress-induced apoptosis and caspase-independent apoptosis. Naturally occurring cell death plays a critical role in many normal processes like foetal development and tissue homeostasis. Dysregulation of apoptosis contributes to many diseases, including cancer. On the other hand, apoptosis-regulating proteins also provide targets for drug discovery and new approaches to the treatment of cancer.


Chronic Myeloid Leukaemia Bortezomib Death Receptor Acute Myeloid Leukaemia Permeability Transition Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306PubMedGoogle Scholar
  2. 2.
    Farber JL, El Mofty SK (1975) The biochemical pathology of liver cell necrosis. Am J Pathol 81:237–250PubMedGoogle Scholar
  3. 3.
    Uchiyama Y (1995) Apoptosis: the history and trends of its studies. Arch Histol Cytol 58:127–137PubMedGoogle Scholar
  4. 4.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedGoogle Scholar
  5. 5.
    Yuan J (1996) Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem 60:4–11PubMedGoogle Scholar
  6. 6.
    Schittny JC, Djonov V, Fine A, Burri PH (1998) Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18:786–793PubMedGoogle Scholar
  7. 7.
    Scavo LM, Ertsey R, Chapin CJ, Allen L, Kitterman JA (1998) Apoptosis in the development of rat and human fetal lungs. Am J Respir Cell Mol Biol 18:21–31PubMedGoogle Scholar
  8. 8.
    Green DR, Martin SJ (1995) The killer and the executioner: how apoptosis controls malignancy. Curr Opin Immunol 7:694–703PubMedGoogle Scholar
  9. 9.
    Liebermann DA, Hoffman B, Steinman RA (1995) Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11:199–210PubMedGoogle Scholar
  10. 10.
    Shibata S, Kyuwa S, Lee SK, Toyoda Y, Goto N (1994) Apoptosis induced in mouse hepatitis virus-infected cells by a virus-specific CD8+ cytotoxic T-lymphocyte clone. J Virol 68:7540–7545PubMedGoogle Scholar
  11. 11.
    Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306PubMedGoogle Scholar
  12. 12.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedGoogle Scholar
  13. 13.
    Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia CM, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911PubMedGoogle Scholar
  14. 14.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424PubMedGoogle Scholar
  15. 15.
    Duriez PJ, Shah GM (1997) Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349PubMedGoogle Scholar
  16. 16.
    Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99PubMedGoogle Scholar
  17. 17.
    Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184PubMedGoogle Scholar
  18. 18.
    Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446PubMedGoogle Scholar
  19. 19.
    Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T (1995) Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16–induced U937 apoptosis. Biochem Biophys Res Commun 217:1185–1192PubMedGoogle Scholar
  20. 20.
    Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270:6425–6428PubMedGoogle Scholar
  21. 21.
    Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin MF (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238–3246PubMedGoogle Scholar
  22. 22.
    Widmann C, Gibson S, Johnson GL (1998) Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273:7141–7147PubMedGoogle Scholar
  23. 23.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776PubMedGoogle Scholar
  24. 24.
    Barkett M, Xue D, Horvitz HR, Gilmore TD (1997) Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 272:29419–29422PubMedGoogle Scholar
  25. 25.
    Tan X, Martin SJ, Green DR, Wang JYJ (1997) Degradation of retinoblastoma protein in tumor necrosis factor- and CD95-induced cell death. J Biol Chem 272:9613–9616PubMedGoogle Scholar
  26. 26.
    Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C, Michel MR (1998) Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J 17:1268–1278PubMedGoogle Scholar
  27. 27.
    Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM (1998) Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A 95:554–559PubMedGoogle Scholar
  28. 28.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501PubMedGoogle Scholar
  29. 29.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774PubMedGoogle Scholar
  30. 30.
    Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690PubMedGoogle Scholar
  31. 31.
    Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76:959–962PubMedGoogle Scholar
  32. 32.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308PubMedGoogle Scholar
  33. 33.
    Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer AY, Camonis JH, Wallach D (1995) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 270:387–391PubMedGoogle Scholar
  34. 34.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512PubMedGoogle Scholar
  35. 35.
    Nagata S (1997) Apoptosis by death factor. Cell 88:355–365PubMedGoogle Scholar
  36. 36.
    Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16:2794–2804PubMedGoogle Scholar
  37. 37.
    Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090PubMedGoogle Scholar
  38. 38.
    Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308PubMedGoogle Scholar
  39. 39.
    Whiteside ST, Israel A (1997) I kappa B proteins: structure, function and regulation. Semin Cancer Biol 8:75–82PubMedGoogle Scholar
  40. 40.
    Duan H, Dixit VM (1997) RAIDD is a new ‘death’ adaptor molecule. Nature 385:86–89PubMedGoogle Scholar
  41. 41.
    Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes AT, Alnemri ES (1997) CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res 57:615–619PubMedGoogle Scholar
  42. 42.
    Sheikh MS, Fornace AJ Jr (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14:1509–1513PubMedGoogle Scholar
  43. 43.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413PubMedGoogle Scholar
  44. 44.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedGoogle Scholar
  45. 45.
    Festjens N, van Gurp M, Van Loo G, Saelens X, Vandenabeele P (2004) Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death. Acta Haematol 111:7–27PubMedGoogle Scholar
  46. 46.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662PubMedGoogle Scholar
  47. 47.
    Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127PubMedGoogle Scholar
  48. 48.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326PubMedGoogle Scholar
  49. 49.
    Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911PubMedGoogle Scholar
  50. 50.
    Minn AJ, Swain RE, Ma A, Thompson CB (1998) Recent progress on the regulation of apoptosis by Bcl-2 family members. Adv Immunol 70:245–279PubMedGoogle Scholar
  51. 51.
    Kelekar A, Thompson CB (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8:324–330PubMedGoogle Scholar
  52. 52.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058PubMedGoogle Scholar
  53. 53.
    Guo B, Godzik A, Reed JC (2001) Bcl-G, a novel pro-apoptotic member of Bcl-2 family. J Biol Chem 276:2780–2785PubMedGoogle Scholar
  54. 54.
    Ke N, Godzik A, Reed JC (2001) Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem 276:12481–12484PubMedGoogle Scholar
  55. 55.
    Shinoe T, Wanaka A, Nikaido T, Kanazawa K, Shimizu J, Imaizumi K, Kanazawa I (2001) Upregulation of the pro-apoptotic BH3-only peptide harakiri in spinal neurons of amyotrophic lateral sclerosis patients. Neurosci Lett 313:153–157PubMedGoogle Scholar
  56. 56.
    Wu X, Deng Y (2002) Bax and BH3-domain-only proteins in p53-mediated apoptosis. Front Biosci 7:151–156Google Scholar
  57. 57.
    Farooq M, Kim Y, Im S, Chung E, Hwang S, Sohn M, Kim M, Kim J (2001) Cloning of BNIP3h, a member of proapoptotic BNIP3 family genes. Exp Mol Med 33:169–173PubMedGoogle Scholar
  58. 58.
    Inohara N, Ekhterae D, Garcia I, Carrio R, Merino J, Merry A, Chen S, Nunez G (1998) Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-XL. J Biol Chem 273:8705–8710PubMedGoogle Scholar
  59. 59.
    Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699PubMedGoogle Scholar
  60. 60.
    Reed JC (1996) Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt 97:72–100PubMedGoogle Scholar
  61. 61.
    Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7:249–257PubMedGoogle Scholar
  62. 62.
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403PubMedGoogle Scholar
  63. 63.
    Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15PubMedGoogle Scholar
  64. 64.
    Ito T, Deng X, Carr B, May WS (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272:11671–11673PubMedGoogle Scholar
  65. 65.
    Blagosklonny MV (2001) Unwinding the loop of Bcl-2 phosphorylation. Leukemia 15:869–874PubMedGoogle Scholar
  66. 66.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189:381–394PubMedGoogle Scholar
  67. 67.
    Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 140:1485–1495PubMedGoogle Scholar
  68. 68.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedGoogle Scholar
  69. 69.
    Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53PubMedGoogle Scholar
  70. 70.
    Van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26PubMedGoogle Scholar
  71. 71.
    Van Loo G, Demol H, van Gurp M, Hoorelbeke B, Schotte P, Beyaert R, Zhivotovsky B, Gevaert K, Declercq W, Vandekerckhove J, Vandenabeele P (2002) A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death Differ 9:301–308PubMedGoogle Scholar
  72. 72.
    Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438PubMedGoogle Scholar
  73. 73.
    Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99PubMedGoogle Scholar
  74. 74.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490PubMedGoogle Scholar
  75. 75.
    Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Laupher S, Maundrell K, Antonsson B, Martinou J (1999) Bid-induced conformational change of Bax is reponsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901PubMedGoogle Scholar
  76. 76.
    Zamzami N, El Hamel C, Maisse C, Brenner C, Munoz-Pinedo C, Belzacq AS, Costantini P, Vieira H, Loeffler M, Molle G, Kroemer G (2000) Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 19:6342–6350PubMedGoogle Scholar
  77. 77.
    Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23:2746–2756PubMedGoogle Scholar
  78. 78.
    Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614PubMedGoogle Scholar
  79. 79.
    Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618PubMedGoogle Scholar
  80. 80.
    Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263PubMedGoogle Scholar
  81. 81.
    Momoi T (2004) Caspases involved in ER stress-mediated cell death. J Chem Neuroanat 28:101–105PubMedGoogle Scholar
  82. 82.
    Kadowaki H, Nishitoh H, Ichijo H (2004) Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanat 28:93–100PubMedGoogle Scholar
  83. 83.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  84. 84.
    Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139:327–338PubMedGoogle Scholar
  85. 85.
    Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521PubMedGoogle Scholar
  86. 86.
    Hu S, Vincenz C, Ni J, Gentz R, Dixit VM (1997) I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1 and CD-95-induced apoptosis. J Biol Chem 272:17255–17257PubMedGoogle Scholar
  87. 87.
    Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y, Fernandes AT, Croce CM, Litwack G, Tomaselli KJ, Armstrong RC, Alnemri ES (1997) FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 272:18542–18545PubMedGoogle Scholar
  88. 88.
    Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP [see comments]. Nature 388:190–195PubMedGoogle Scholar
  89. 89.
    Uren AG, Coulson EJ, Vaux DL (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeast. Trends Biochem Sci 23:159–162PubMedGoogle Scholar
  90. 90.
    Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton HG, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353PubMedGoogle Scholar
  91. 91.
    Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 15:2685–2694PubMedGoogle Scholar
  92. 92.
    Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921PubMedGoogle Scholar
  93. 93.
    Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276:3238–3246PubMedGoogle Scholar
  94. 94.
    Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304PubMedGoogle Scholar
  95. 95.
    Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914–6925PubMedGoogle Scholar
  96. 96.
    LaCasse E, Baird S, Korneluk R, MacKenzie A (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247–3259PubMedGoogle Scholar
  97. 97.
    Pathan N, Marusawa H, Krajewska M, Matsuzawa S, Kim H, Okada K, Torii S, Kitada S, Krajewski S, Welsh K, Pio F, Godzik A, Reed JC (2001) TUCAN, an antiapoptotic caspase-associated recruitment domain family protein overexpressed in cancer. J Biol Chem 276:32220–32229PubMedGoogle Scholar
  98. 98.
    Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475PubMedGoogle Scholar
  99. 99.
    Beere HM (2004) “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651PubMedGoogle Scholar
  100. 100.
    Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–257PubMedGoogle Scholar
  101. 101.
    McCarthy NJ, Whyte MK, Gilbert CS, Evan GI (1997) Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136:215–227PubMedGoogle Scholar
  102. 102.
    Vermeulen K, Strnad M, Havlicek L, Van Onckelen H, Lenjou M, Nijs G, Van Bockstaele D, Berneman ZN (2002) Plant cytokinin analogues with inhibitory activity on cyclin dependent kinases (CDK) exert their antiproliferative effect through induction of apoptosis initiated by the mitochondrial pathway: determination by a multiparametric flow cytometric analysis. Exp Hematol 30:1107–1114PubMedGoogle Scholar
  103. 103.
    Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT (1994) Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33:3934–3940PubMedGoogle Scholar
  104. 104.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312PubMedGoogle Scholar
  105. 105.
    Xiang J, Chao DT, Korsmeyer SJ (1996) Bax-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A 93:14559–14563PubMedGoogle Scholar
  106. 106.
    Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485PubMedGoogle Scholar
  107. 107.
    Schulze OK, Krammer PH, Droge W (1994) Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 13:4587–4596PubMedGoogle Scholar
  108. 108.
    Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P (2003) Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol 4:387–393PubMedGoogle Scholar
  109. 109.
    Mathiasen IS, Jaattela M (2002) Triggering caspase-independent cell death to combat cancer. Trends Mol Med 8:212–220PubMedGoogle Scholar
  110. 110.
    Johnson DE (2000) Noncaspase proteases in apoptosis. Leukemia 14:1695–1703PubMedGoogle Scholar
  111. 111.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedGoogle Scholar
  112. 112.
    Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598PubMedGoogle Scholar
  113. 113.
    Fadeel B, Orrenius S, Zhivotovsky B (1999) Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266:699–717PubMedGoogle Scholar
  114. 114.
    Joaquin AM, Gollapudi S (2001) Functional decline in aging and disease: a role for apoptosis. J Am Geriatr Soc 49:1234–1240PubMedGoogle Scholar
  115. 115.
    Granville DJ, Carthy CM, Hunt DW, McManus BM (1998) Apoptosis: molecular aspects of cell death and disease. Lab Invest 78:893–913PubMedGoogle Scholar
  116. 116.
    Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107:489–506PubMedGoogle Scholar
  117. 117.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348PubMedGoogle Scholar
  118. 118.
    Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, Aime SC, Bodrug S, Kitada S, Hanada M (1996) BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 60:23–32PubMedGoogle Scholar
  119. 119.
    Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906PubMedGoogle Scholar
  120. 120.
    Tsujimoto Y, Yunis J, Onorato SL, Erikson J, Nowell PC, Croce CM (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406PubMedGoogle Scholar
  121. 121.
    Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD, Reed JC (1998) Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91:991–1000PubMedGoogle Scholar
  122. 122.
    Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL, Bataille R, Amiot M (1999) Mcl-1 and Bcl-XL are co-regulated by IL-6 in human myeloma cells. J Cell Biol 97:1235–1239Google Scholar
  123. 123.
    Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR (1998) Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene 16:1383–1390PubMedGoogle Scholar
  124. 124.
    Michels J, Johnson PW, Packham G (2005) Mcl-1. Int J Biochem Cell Biol 37:267–271PubMedGoogle Scholar
  125. 125.
    Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969PubMedGoogle Scholar
  126. 126.
    Brimmell M, Mendiola R, Mangion J, Packham G (1998) BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 16:1803–1812PubMedGoogle Scholar
  127. 127.
    Ong Y, McMullin M, Bailie K, Lappin T, Jones F, Irvine A (2000) High bax expression is a good prognostic indicator in acute myeloid leukaemia. Br J Haematol 111:182–189PubMedGoogle Scholar
  128. 128.
    Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G (1998) Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16:2265–2282PubMedGoogle Scholar
  129. 129.
    Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299PubMedGoogle Scholar
  130. 130.
    Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156–159PubMedGoogle Scholar
  131. 131.
    Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E et al (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15:3032–3040PubMedGoogle Scholar
  132. 132.
    Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, Fornace AJ Jr, el Deiry WS (1998) p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 58:1593–1598PubMedGoogle Scholar
  133. 133.
    Chipuk JE, Green DR (2004) Cytoplasmic p53: bax and forward. Cell Cycle 3:429–431PubMedGoogle Scholar
  134. 134.
    Amundson SA, Myers TG, Fornace AJ Jr (1998) Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17:3287–3299PubMedGoogle Scholar
  135. 135.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331PubMedGoogle Scholar
  136. 136.
    Schwartz D, Rotter V (1998) p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 8:325–336PubMedGoogle Scholar
  137. 137.
    Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413PubMedGoogle Scholar
  138. 138.
    Oren M (1999) Regulation of the p53 tumor suppressor protein. J Biol Chem 274:36031–36034PubMedGoogle Scholar
  139. 139.
    Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome [see comments]. Nature 348:747–749PubMedGoogle Scholar
  140. 140.
    Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99PubMedGoogle Scholar
  141. 141.
    Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254PubMedGoogle Scholar
  142. 142.
    Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946PubMedGoogle Scholar
  143. 143.
    Tamiya S, Etoh K, Suzushima H, Takatsuki K, Matsuoka M (1998) Mutation of CD95 (Fas/Apo-1) gene in adult T-cell leukemia cells. Blood 91:3935–3942PubMedGoogle Scholar
  144. 144.
    Beltinger C, Kurz E, Bohler T, Schrappe M, Ludwig WD, Debatin KM (1998) CD95 (APO-1/Fas) mutations in childhood T-lineage acute lymphoblastic leukemia. Blood 91:3943–3951PubMedGoogle Scholar
  145. 145.
    Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS (1997) Mutations in the Fas antigen in patients with multiple myeloma. Blood 90:4266–4270PubMedGoogle Scholar
  146. 146.
    Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474PubMedGoogle Scholar
  147. 147.
    Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795PubMedGoogle Scholar
  148. 148.
    Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ (1999) Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98:47–58PubMedGoogle Scholar
  149. 149.
    Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535PubMedGoogle Scholar
  150. 150.
    Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH (2005) CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 65:815–821PubMedGoogle Scholar
  151. 151.
    Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584PubMedGoogle Scholar
  152. 152.
    Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92:212–216PubMedGoogle Scholar
  153. 153.
    Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6:1796–1803PubMedGoogle Scholar
  154. 154.
    Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967PubMedGoogle Scholar
  155. 155.
    Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI, Reynolds C, Soreng L, Griffin CA, Graeme-Cook F, Harris NL, Weisenburger D, Pinkus GS, Fletcher JA, Sklar J (1999) Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 59:6205–6213PubMedGoogle Scholar
  156. 156.
    Motegi M, Yonezumi M, Suzuki H, Suzuki R, Hosokawa Y, Hosaka S, Kodera Y, Morishima Y, Nakamura S, Seto M (2000) API2-MALT1 chimeric transcripts involved in mucosa-associated lymphoid tissue type lymphoma predict heterogeneous products. Am J Pathol 156:807–812PubMedGoogle Scholar
  157. 157.
    Schmitt CA, Lowe SW (1999) Apoptosis and therapy. J Pathol 187:127–137PubMedGoogle Scholar
  158. 158.
    Martinez-Lorenzo MJ, Gamen S, Etxeberria J, Lasierra P, Larrad L, Pineiro A, Anel A, Naval J, Alava MA (1998) Resistance to apoptosis correlates with a highly proliferative phenotype and loss of Fas and CPP32 (caspase-3) expression in human leukemia cells. Int J Cancer 75:473–481PubMedGoogle Scholar
  159. 159.
    Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81:3091–3096PubMedGoogle Scholar
  160. 160.
    Simonian PL, Grillot DA, Nunez G (1997) Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 90:1208–1216PubMedGoogle Scholar
  161. 161.
    Minn AJ, Rudin CM, Boise LH, Thompson CB (1995) Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86:1903–1910PubMedGoogle Scholar
  162. 162.
    Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81:151–157PubMedGoogle Scholar
  163. 163.
    Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519PubMedGoogle Scholar
  164. 164.
    Friesen C, Herr I, Krammer PH, Debatin KM (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 2:574–577PubMedGoogle Scholar
  165. 165.
    Friesen C, Fulda S, Debatin KM (1997) Deficient activation of the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia 11:1833–1841PubMedGoogle Scholar
  166. 166.
    Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM (1997) The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57:3823–3829PubMedGoogle Scholar
  167. 167.
    Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin KM (1997) Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res 57:4956–4964PubMedGoogle Scholar
  168. 168.
    Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B, Young NS, Maciejewski JP (1997) Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-alpha in chronic myelogenous leukemia. Blood 89:957–964PubMedGoogle Scholar
  169. 169.
    Min YH, Lee S, Lee JW et al (1996) Expression of FAS antigen in acute myeloid leukemia is associated with therapeutic response to chemotherapy. Br J Haematol 93:928–930PubMedGoogle Scholar
  170. 170.
    Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 98:11515–11520PubMedGoogle Scholar
  171. 171.
    Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162PubMedGoogle Scholar
  172. 172.
    Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C, Riccobene T, Johnson R, Fiscella M, Mahoney A, Carrell J, Boyd E, Yao XT, Zhang L, Zhong L, von Kerczek A, Shepard L, Vaughan T, Edwards B, Dobson C, Salcedo T, Albert V (2005) HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92:1430–1441PubMedGoogle Scholar
  173. 173.
    Wang JL, Zhang ZJ, Choksi S, Shan S, Lu Z, Croce CM, Alnemri ES, Korngold R, Huang Z (2000) Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 60:1498–1502PubMedGoogle Scholar
  174. 174.
    Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD, Yuan J, Wagner G (2002) A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc 124:1234–1240PubMedGoogle Scholar
  175. 175.
    Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97:7124–7129PubMedGoogle Scholar
  176. 176.
    Degterev A (2001) Identification of small-molecule inhibitors of interaction between BH3 domain and Bcl-Xl. Nat Cell Biol 3:173–182PubMedGoogle Scholar
  177. 177.
    Pellecchia M, Reed JC (2004) Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des 10:1387–1398PubMedGoogle Scholar
  178. 178.
    Qiu J, Levin LR, Buck J, Reidenberg MM (2002) Different pathways of cell killing by gossypol enantiomers. Exp Biol Med (Maywood) 227:398–401Google Scholar
  179. 179.
    Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63:8118–8121PubMedGoogle Scholar
  180. 180.
    Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3:173–182PubMedGoogle Scholar
  181. 181.
    Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J, Zhang KY, Hockenbery DM (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3:183–191PubMedGoogle Scholar
  182. 182.
    Raje N, Kumar S, Hideshima T, Roccaro A, Ishitsuka K, Yasui H, Shiraishi N, Chauhan D, Munshi NC, Green SR, Anderson KC (2005) Seliciclib (CYC202 or R-Roscovitine), a small molecule cyclin dependent kinase inhibitor, mediates activity via downregulation of Mcl-1 in multiple myeloma. Blood prepublished online Apr 12Google Scholar
  183. 183.
    Koty PP, Zhang H, Levitt ML (1999) Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines. Lung Cancer 23:115–127PubMedGoogle Scholar
  184. 184.
    Keith FJ, Bradbury DA, Zhu YM, Russell NH (1995) Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 9:131–138PubMedGoogle Scholar
  185. 185.
    Banerjee D (2001) Genasense (Genta Inc). Curr Opin Investig Drugs 2:574–580PubMedGoogle Scholar
  186. 186.
    Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC (1994) Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 4:71–79PubMedGoogle Scholar
  187. 187.
    Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M, Dziewanowska Z (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349:1137–1141PubMedGoogle Scholar
  188. 188.
    Flaherty KT, Stevenson JP, O’Dwyer PJ (2001) Antisense therapeutics: lessons from early clinical trials. Curr Opin Oncol 13:499–505PubMedGoogle Scholar
  189. 189.
    Marcucci G, Byrd JC, Dai G, Klisovic MI, Kourlas PJ, Young DC, Cataland SR, Fisher DB, Lucas D, Chan KK, Porcu P, Lin ZP, Farag SF, Frankel SR, Zwiebel JA, Kraut EH, Balcerzak SP, Bloomfield CD, Grever MR, Caligiuri MA (2003) Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 101:425–432PubMedGoogle Scholar
  190. 190.
    Rudin CM, Kozloff M, Hoffman PC, Edelman MJ, Karnauskas R, Tomek R, Szeto L, Vokes EE (2004) Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 22:1110–1117PubMedGoogle Scholar
  191. 191.
    Tai YT, Strobel T, Kufe D, Cannistra SA (1999) In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the Bax gene. Cancer Res 59:2121–2126PubMedGoogle Scholar
  192. 192.
    Grad JM, Cepero E, Boise LH (2001) Mitochondria as targets for established and novel anti-cancer agents. Drug Resist Updat 4:85–91PubMedGoogle Scholar
  193. 193.
    Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053PubMedGoogle Scholar
  194. 194.
    Amadori D, Frassineti GL, De Matteis A, Mustacchi G, Santoro A, Cariello S, Ferrari M, Nascimben O, Nanni O, Lombardi A, Scarpi E, Zoli W (1998) Modulating effect of lonidamine on response to doxorubicin in metastatic breast cancer patients: results from a multicenter prospective randomized trial. Breast Cancer Res Treat 49:209–217PubMedGoogle Scholar
  195. 195.
    Dogliotti L, Danese S, Berruti A, Zola P, Buniva T, Bottini A, Richiardi G, Moro G, Farris A, Bau MG, Porcile G (1998) Cisplatin, epirubicin, and lonidamine combination regimen as first-line chemotherapy for metastatic breast cancer: a pilot study. Cancer Chemother Pharmacol 41:333–338PubMedGoogle Scholar
  196. 196.
    Ianniello GP, De Cataldis G, Comella P, Scarpati MD, Maiorino A, Brancaccio L, Cioffi R, Lombardi A, Carnicelli P, Tinessa V (1996) Cisplatin, epirubicin, and vindesine with or without lonidamine in the treatment of inoperable nonsmall cell lung carcinoma: a multicenter randomized clinical trial. Cancer 78:63–69PubMedGoogle Scholar
  197. 197.
    Lane PD, Lain S (2002) Therapeutic exploitation of the p53 pathway. Trends Mol Med 8:38–42PubMedGoogle Scholar
  198. 198.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedGoogle Scholar
  199. 199.
    Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947PubMedGoogle Scholar
  200. 200.
    Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403:103–108PubMedGoogle Scholar
  201. 201.
    Castro AC, Dang LC, Soucy F, Grenier L, Mazdiyasni H, Hottelet M, Parent L, Pien C, Palombella V, Adams J (2003) Novel IKK inhibitors: beta-carbolines. Bioorg Med Chem Lett 13:2419–2422PubMedGoogle Scholar
  202. 202.
    Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T, Tripp CS (2003) A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 278:32861–32871PubMedGoogle Scholar
  203. 203.
    Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S (2004) Interruption of the NF-kappaB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood 103:2761–2770PubMedGoogle Scholar
  204. 204.
    Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y, Zusi FC (2003) BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J Biol Chem 278:1450–1456PubMedGoogle Scholar
  205. 205.
    Paramore A, Frantz S (2003) Bortezomib. Nat Rev Drug Discov 2:611–612PubMedGoogle Scholar
  206. 206.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedGoogle Scholar
  207. 207.
    Bold RJ, Virudachalam S, McConkey DJ (2001) Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 100:11–17PubMedGoogle Scholar
  208. 208.
    Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ (2005) Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 56:46–54PubMedGoogle Scholar
  209. 209.
    Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4:443–449PubMedGoogle Scholar
  210. 210.
    Reed JC (2001) Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 7:314–319PubMedGoogle Scholar
  211. 211.
    Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305:1471–1474PubMedGoogle Scholar
  212. 212.
    Olie RA, Simoes-Wust AP, Baumann B, Leech SH, Fabbro D, Stahel RA, Zangemeister-Wittke U (2000) A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 60:2805–2809PubMedGoogle Scholar
  213. 213.
    Sasaki H, Sheng Y, Kotsuji F, Tsang BK (2000) Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60:5659–5666PubMedGoogle Scholar
  214. 214.
    Blagosklonny MV (2002) Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16:455–462PubMedGoogle Scholar
  215. 215.
    Schmitt CA, Lowe SW (2001) Apoptosis is critical for drug response in vivo. Drug Resist Updat 4:132–134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Katrien Vermeulen
    • 1
  • Dirk R. Van Bockstaele
    • 1
  • Zwi N. Berneman
    • 1
    Email author
  1. 1.Faculty of Medicine, Laboratory of Experimental Hematology, Antwerp University HospitalUniversity of AntwerpEdegemBelgium

Personalised recommendations