Annals of Hematology

, Volume 84, Issue 6, pp 368–375

Microsatellite instability is not an uncommon finding in adult de novo acute myeloid leukemia

  • Josep F. Nomdedéu
  • Granada Perea
  • Camino Estivill
  • Adriana Lasa
  • Maria J. Carnicer
  • Salut Brunet
  • Anna Aventín
  • Jorge Sierra
Original Article

Abstract

To investigate the biologic relevance of microsatellite instability (MSI) in de novo acute myeloid leukemia (AML), 102 consecutive adult patients were analyzed by using a panel of seven microsatellites (BAT25, BAT26, D13S1267, D13S174, D2S123, D5S346 and Mdf15). Frame-shift mutations in the repetitive sequences in the coding region of MSH3, MSH6, BAX, TGFBRII and IGFRII were also investigated by using a fluorescent PCR-based assay. Methylation-specific PCR was used to determine the methylation status of hMLH1 in MSI+ cases. MSH3, MSH6 and MLH1 expression was also analyzed in 68 cases by means of real-time quantitative PCR. MSI was detected in 20 cases: 14 cases had MSI-high (instability of at least two microsatellite markers) and 6 cases corresponded to MSI-low (a single polymorphic marker with instability). Six MSI+ cases showed an associated MLL rearrangement (p=0.002). No single case showed a mutation in the repetitive sequences of the MSH3, MSH6, BAX, TGFBRII and IGFRII genes. Most samples displayed low mRNA levels of the repair genes. hMLH1 promoter was hypermethylated in five MSI+ cases. Overall survival analysis revealed no adverse effect of MSI positivity. These results suggest that MSI may be a common biologic finding in de novo AML.

Keywords

Leukemia Microsatellite instability Cancer genetics 

References

  1. 1.
    Speck NA, Gilliland DG (2002) Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2:502–513Google Scholar
  2. 2.
    Yuan Y, Zhou L, Miyamoto T et al (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 98(18):10398–10403Google Scholar
  3. 3.
    Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542Google Scholar
  4. 4.
    Ionov Y, Peinado MA, Malkhosyan S, Shibta D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561CrossRefPubMedGoogle Scholar
  5. 5.
    Malkhosyan S, Rampino N, Yamamoto H, Perucho M (1996) Frameshift mutator mutations. Nature 382:499–500Google Scholar
  6. 6.
    Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969Google Scholar
  7. 7.
    Suzuki K, Dai T, Suzuki I, Dai Y, Yamashita K, Perucho M (2002) Low mutation incidence in polymorphic noncoding short mononucleotide repeats in gastrointestinal cancer of the microsatellite mutator phenotype pathway. Cancer Res 62:1961–1965Google Scholar
  8. 8.
    Mori Y, Yin J, Rashid A et al (2001) Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res 61:6046–6049Google Scholar
  9. 9.
    Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100:776–781Google Scholar
  10. 10.
    Grimwade D, Walker H, Oliver F et al on behalf of the Medical Research Council Adult and Children’s Leukaemia Working Parties (1998) The importance of diagnostic cytogenetics on outcome in AML. Analysis of 1612 patients entered into the MRC AML10 trial. Blood 92:2322–2333PubMedGoogle Scholar
  11. 11.
    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  12. 12.
    Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268Google Scholar
  13. 13.
    ISCN (1995) In: Mitelman F (ed) An international system for human cytogenetic nomenclature. Karger, BaselGoogle Scholar
  14. 14.
    Gabert J, Beillard E, van der Velden VHJ et al (2003) Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe against cancer program. Leukemia 17:2318–2357Google Scholar
  15. 15.
    Muñoz L, Nomdedéu JF, Villamor N et al (2003) Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 17:76–82Google Scholar
  16. 16.
    Hartmann A, Zanardo L, Bocker-Edmonston T, Blaszyk H, Dietmaier W, Stoehr R et al (2002) Frequent microsatellite instability in sporadic tumors of the upper urinary tract. Cancer Res 62:6796–6802Google Scholar
  17. 17.
    Esteller M, Catasus L, Matias-Guiu X, Mutter GL, Prat J, Baylin SB, Herman JG (1999) HMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 155:1767–1772Google Scholar
  18. 18.
    Macintyre E, Bourquelot P, Leboeuf D, Rimokh R, Archimbaud E, Smetsers T, Zittoun R (1997) MLL cleavage occurs in approximately 5% of de novo acute myeloid leukemia, including in patients analyzed before treatment induction. Blood. 89:2224–2226Google Scholar
  19. 19.
    Komatsu N, Takeuchi S, Ikezoe T et al (2000) Mutations of the E2F4 gene in hematological malignancies having microsatellite instability. Blood 95:1509–1510Google Scholar
  20. 20.
    Nakanishi M, Tanaka K, Takhashi T, Kyo T, Dohy H, Fujiwara M, Kamada N (2001) Microsatellite instability in acute myelocytic leukaemia developed from A-bomb survivors. Int J Radiat Biol 77:687–694Google Scholar
  21. 21.
    Sheikhha MH, Tobal K, Liu Yin JA (2002) High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 117:359–365CrossRefPubMedGoogle Scholar
  22. 22.
    Olipitz W, Hopfinger G, Aguiar RCT, Gunsilius E, Girschikofsky M, Bodner C et al (2002) Defective DNA-mismatch repair: a potential mediator of leukemogenic susceptibility in therapy-related myelodysplasia and leukemia. Genes Chromosom Cancer 34:243–248Google Scholar
  23. 23.
    Das-Gupta EP, Seedhouse CH, Russell NH (2001) Microsatellite instability occurs in defined subsets of patients with acute myeloblastic leukaemia. Br J Haematol 114:307–312Google Scholar
  24. 24.
    Maeck L, Haase D, Schoch C, Hiddemann W, Alves F (2000) Genetic instability in myelodysplastic syndrome: detection of microsatellite instability and loss of heterozygosity in bone marrow samples with karyotype alterations. Br J Haematol 109:842–846Google Scholar
  25. 25.
    Rimsza LM, Kopecky KJ, Ruschulte J et al (2000) Microsatellite instability is not a defining feature of acute myeloid leukemogenesis in adults: results of a retrospective study of 132 patients and review of the literature. Leukemia 14:1044–1051Google Scholar
  26. 26.
    Kodera T, Kohno T, Takakura S, Morishita K, Hamaguchi H, Hayashi Y, Sasaki T, Yokota J (1999) Microsatellite instability in lymphoid leukemia and lymphoma cell lines but not in myeloid leukemia cell lines. Genes Chromosom Cancer 26:267–269Google Scholar
  27. 27.
    Tasaka T, Lee S, Spira S, Takeuchi S, Nagai M, Takahara J, Koeffler HP (1997) Microsatellite instability during the progression of acute myelocytic leukaemia. Br J Haematol 98:219–221Google Scholar
  28. 28.
    Molenaar JJ, Gérard B, Chambon-Pautas C, Cavé H, Duval M, Vilmer E, Grandchamp B (1998) Microsatellite instability and frameshift mutations in BAX and transforming growth factor-β RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 92:230–233Google Scholar
  29. 29.
    Wada C, Shionoya S, Fujinoo Y, Tokuhiro H, Akahoshi T, Uchida T, Ohtani H (1994) Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 83:3449–3456Google Scholar
  30. 30.
    Reese JS, Liu L, Gerson SL (2003) Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102:1626–1633Google Scholar
  31. 31.
    Auner HW, Olipitz W, Hoeffler G, Bodner C, Konrad D, Crevenna R, Linkesch W, Sill H (1999) Mutational analysis of the DNA mismatch repair gene hMLH1 in myeloid leukaemias. Br J Haematol 106:706–708Google Scholar
  32. 32.
    Nakagawa H, Nuovo GJ, Zervos EE, Martin EW, Salovaara R, Aaltonen LA, de la Chapelle A (2001) Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res 61:6991–6995Google Scholar
  33. 33.
    Baranovskaya S, Soto JL, Perucho M, Malkhosyan SR (2001) Functional significance of concomitant inactivation of hMLH1 and hMSH6 in tumor cells of the microsatellite mutator phenotype. Proc Natl Acad Sci U S A 98:15107–15112Google Scholar
  34. 34.
    Richards B, Zhang H, Phear G, Meuth M (1997) Conditional mutator phenotypes in hMSH2-deficient tumor cell lines. Science 277:1523–1526Google Scholar
  35. 35.
    Parsons R, Li GM, Longley M, Modrich P, Liu B, Berk T, Hamilton SR, Kinzler KW, Vogelstein B (1995) Mismatch repair deficiency in phenotypically normal human cells. Science 268:738–740Google Scholar
  36. 36.
    Lengauer C, Kinzler K, Vogelstein B (1997) DNA methylation and genetic instability in colorectal cancer cellls. Proc Natl Acad Sci U S A 94:2545–2550Google Scholar
  37. 37.
    Andrew SE, McKinnon M, Cheng BS, Francis A, Penney J, Reitmair AH, Mak TW, Jirik FR (1998) Tissues of MSH2 deficient mice demonstrate hypermutability on exposure to a DNA methylating agent. Proc Natl Acad Sci U S A 95:1126–1130Google Scholar
  38. 38.
    Baross-Francis A, Andrew SE, Penney JE, Jirik FR (1998) Tumors of DNA mismatch repair-deficient hosts exhibit dramatic increases in genomic instability. Proc Natl Acad Sci U S A 95:8739–8743Google Scholar
  39. 39.
    Ribic CM,Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257CrossRefPubMedGoogle Scholar
  40. 40.
    Faulkner RD, Seedhouse CH, Das-Gupta EP, Russell NH (2004) BAT-25 and BAT-26, two mononucleotide microsatellites, are not sensitive markers of microsatellite instability in acute myeloid leukaemia. Br J Haematol 124:160–165Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Josep F. Nomdedéu
    • 1
  • Granada Perea
    • 1
  • Camino Estivill
    • 1
  • Adriana Lasa
    • 1
  • Maria J. Carnicer
    • 1
  • Salut Brunet
    • 1
  • Anna Aventín
    • 1
  • Jorge Sierra
    • 1
  1. 1.Department of Hematology, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations