Advertisement

Annals of Hematology

, Volume 84, Supplement 1, pp 39–46 | Cite as

Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia

  • Oliver Galm
  • Stefan Wilop
  • Christian Lüders
  • Edgar Jost
  • Gerald Gehbauer
  • James G. Herman
  • Rainhardt Osieka
Original Article

Abstract

Hypermethylation of CpG islands near gene promoter regions is associated with transcriptional inactivation and represents an important mechanism of gene silencing in carcinogenesis. Such epigenetic phenomena can act alongside DNA mutations and deletions to disrupt tumor-suppressor gene function. The methylation status of the promoter-associated CpG islands from 11 well-characterized cancer-related genes was analyzed by methylation-specific polymerase chain reaction in 60 adult patients with acute myelogenous leukemia (AML) at diagnosis. The frequency of aberrant methylation among the patient samples was 45.0% (27/60) for suppressor of cytokine signaling-1, 31.7% (19/60) for p15, 20.0% (12/60) for retinoic acid receptor β2, 13.3% (8/60) for p73 and E-cadherin, 5.0% (3/60) for O6-methylguanine DNA methyltransferase, 3.3% (2/60) for death-associated protein kinase 1 and hMLH1, 1.7% (1/60) for p16, and 0% (0/60) for the tissue inhibitor of matrix metalloproteinases-3 and Ras association domain family 1A. Aberrant DNA methylation was found in AML of all French–American–British subtypes and throughout all cytogenetic risk groups. There appeared to be a trend towards a higher methylation frequency in AML patients with an unfavorable karyotype, but this difference was not statistically significant. Our data indicate that hypermethylation of multiple genes involving fundamental cellular pathways is a common event in AML, which varies greatly in frequency among the genes examined. The accumulation of epigenetic events affecting genes which are involved in regulating cell cycle inhibition, cell adhesion, growth factor signaling, and apoptosis may contribute to the malignant AML phenotype. The growing knowledge of the role of epigenetics in the aberrant silencing of cancer-related genes provides a rationale and molecular basis for targeted therapeutic approaches with demethylating agents in AML.

Keywords

DNA methylation Tumor-suppressor genes Acute myelogenous leukemia Epigenetics Methylation profile Demethylating agents 

Notes

Acknowledgements

We would like to thank Sandra Mellen and Ingeborg Wiegand for expert technical assistance and Albert Esser for help with the statistical analysis. We also thank Dr. Michael Lübbert for critical reading of the manuscript and helpful discussion. This work was supported by a grant from the Rheinisch-Westfälische Technische Hochschule Aachen (START program). JGH is a paid consultant to and receives research support from OncoMethylome Sciences. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

References

  1. 1.
    Bachman KE, Herman JG, Corn PG, Merlo A, Costello JF, Cavenee WK, Baylin SB, Graff JR (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 59:798–802PubMedGoogle Scholar
  2. 2.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British cooperative group. Ann Intern Med 103:620–625PubMedGoogle Scholar
  3. 3.
    Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699CrossRefPubMedGoogle Scholar
  4. 4.
    Caligiuri MA, Strout MP, Gilliland DG (1997) Molecular biology of acute myeloid leukemia. Semin Oncol 24:32–44PubMedGoogle Scholar
  5. 5.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107CrossRefPubMedGoogle Scholar
  6. 6.
    Cameron EE, Baylin SB, Herman JG (1999) p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445–2451PubMedGoogle Scholar
  7. 7.
    Claus R, Lubbert M (2003) Epigenetic targets in hematopoietic malignancies. Oncogene 22:6489–6496CrossRefPubMedGoogle Scholar
  8. 8.
    Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB, Herman JG (1999) Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 59:3352–3356PubMedGoogle Scholar
  9. 9.
    Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P, Jones PA, Lubbert M (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964CrossRefPubMedGoogle Scholar
  10. 10.
    Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082PubMedCrossRefGoogle Scholar
  11. 11.
    Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463CrossRefPubMedGoogle Scholar
  12. 12.
    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797PubMedGoogle Scholar
  13. 13.
    Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMedGoogle Scholar
  14. 14.
    Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440CrossRefPubMedGoogle Scholar
  15. 15.
    Esteller M (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109:80–88CrossRefPubMedGoogle Scholar
  16. 16.
    Galm O, Esteller M (2004) Beyond genetics—the emerging role of epigenetic changes in hematopoietic malignancies. Int J Hematol 80:120–127CrossRefPubMedGoogle Scholar
  17. 17.
    Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman JG, Osieka R (2004) DNA methylation changes in multiple myeloma. Leukemia 18:1687–1692CrossRefPubMedGoogle Scholar
  18. 18.
    Gilbert J, Gore SD, Herman JG, Carducci MA (2004) The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 10:4589–4596CrossRefPubMedGoogle Scholar
  19. 19.
    Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542CrossRefPubMedGoogle Scholar
  20. 20.
    Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199PubMedGoogle Scholar
  21. 21.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088PubMedGoogle Scholar
  22. 22.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92:2322–2333PubMedGoogle Scholar
  23. 23.
    Heaney ML, Golde DW (1999) Myelodysplasia. N Engl J Med 340:1649–1660CrossRefPubMedGoogle Scholar
  24. 24.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826CrossRefPubMedGoogle Scholar
  25. 25.
    Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95:6870–6875CrossRefPubMedGoogle Scholar
  26. 26.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054CrossRefPubMedGoogle Scholar
  27. 27.
    Issa JP, Baylin SB, Herman JG (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11(Suppl 1):S7–S11PubMedGoogle Scholar
  28. 28.
    Issa JP (2003) Decitabine. Curr Opin Oncol 15:446–451CrossRefPubMedGoogle Scholar
  29. 29.
    Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640CrossRefPubMedGoogle Scholar
  30. 30.
    Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167CrossRefPubMedGoogle Scholar
  31. 31.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRefPubMedGoogle Scholar
  32. 32.
    Kantarjian HM, O'Brien S, Cortes J, Giles FJ, Faderl S, Issa JP, Garcia-Manero G, Rios MB, Shan J, Andreeff M, Keating M, Talpaz M (2003) Results of decitabine (5-aza-2′deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 98:522–528CrossRefPubMedGoogle Scholar
  33. 33.
    Katzenellenbogen RA, Baylin SB, Herman JG (1999) Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93:4347–4353PubMedGoogle Scholar
  34. 34.
    Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162CrossRefPubMedGoogle Scholar
  35. 35.
    Laird PW (2003) Early detection: the power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266CrossRefPubMedGoogle Scholar
  36. 36.
    Leone G, Teofili L, Voso MT, Lubbert M (2002) DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Haematologica 87:1324–1341PubMedGoogle Scholar
  37. 37.
    Liu S, Shen T, Rush LJ, Becknel B, Klisovic MI, Whitman SP, Vukosavljevic T, Byrd JC, Plass C, Marcucci G (2003) AML1/ETO associates with DNA methyltransferase I (DNMT1) in inducing transcriptional repression of the AML1-target gene interleukin-3 (IL-3). Blood 102:218aGoogle Scholar
  38. 38.
    Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051–1062CrossRefPubMedGoogle Scholar
  39. 39.
    Lubbert M (2000) DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 249:135–164PubMedGoogle Scholar
  40. 40.
    Melki JR, Vincent PC, Clark SJ (1999) Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59:3730–3740PubMedGoogle Scholar
  41. 41.
    Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692CrossRefPubMedGoogle Scholar
  42. 42.
    Paz MF, Fraga MF, Avila S, Guo M, Pollan M, Herman JG, Esteller M (2003) A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 63:1114–1121PubMedGoogle Scholar
  43. 43.
    Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F, Vanrumbeke M, Fenaux P (1998) Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 91:2985–2990PubMedGoogle Scholar
  44. 44.
    Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Agirre X, Barrios M, Navarro G, Molina FJ, Calasanz MJ, Prosper F, Heiniger A, Torres A (2004) Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104:2492–2498CrossRefPubMedGoogle Scholar
  45. 45.
    Rossi D, Capello D, Gloghini A, Franceschetti S, Paulli M, Bhatia K, Saglio G, Vitolo U, Pileri SA, Esteller M, Carbone A, Gaidano G (2004) Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica 89:154–164PubMedGoogle Scholar
  46. 46.
    Rountree MR, Bachman KE, Herman JG, Baylin SB (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20:3156–3165CrossRefPubMedGoogle Scholar
  47. 47.
    Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM, Ellerton J, Larson RA, Schiffer CA, Holland JF (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440CrossRefPubMedGoogle Scholar
  48. 48.
    Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829CrossRefPubMedGoogle Scholar
  49. 49.
    Virmani AK, Rathi A, Zochbauer-Muller S, Sacchi N, Fukuyama Y, Bryant D, Maitra A, Heda S, Fong KM, Thunnissen F, Minna JD, Gazdar AF (2000) Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst 92:1303–1307CrossRefPubMedGoogle Scholar
  50. 50.
    Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A (2000) Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18:956–962PubMedGoogle Scholar
  51. 51.
    Willemze R, Suciu S, Archimbaud E, Muus P, Stryckmans P, Louwagie EA, Berneman Z, Tjean M, Wijermans P, Dohner H, Jehn U, Labar B, Jaksic B, Dardenne M, Zittoun R (1997) A randomized phase II study on the effects of 5-Aza-2′-deoxycytidine combined with either amsacrine or idarubicin in patients with relapsed acute leukemia: an EORTC Leukemia Cooperative Group phase II study (06893). Leukemia 11(Suppl 1):S24–S27PubMedGoogle Scholar
  52. 52.
    Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, Harris CC, Herman JG (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28:29–35CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Oliver Galm
    • 1
  • Stefan Wilop
    • 1
  • Christian Lüders
    • 1
  • Edgar Jost
    • 1
  • Gerald Gehbauer
    • 1
  • James G. Herman
    • 2
  • Rainhardt Osieka
    • 1
  1. 1.Medizinische Klinik IVUniversitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule AachenAachenGermany
  2. 2.The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreUSA

Personalised recommendations