Advertisement

Anatomy and white matter connections of the lateral occipital cortex

  • Ali H. Palejwala
  • Kyle P. O’Connor
  • Panayiotis Pelargos
  • Robert G. Briggs
  • Camille K. Milton
  • Andrew K. Conner
  • Ty M. Milligan
  • Daniel L. O’Donoghue
  • Chad A. Glenn
  • Michael E. SughrueEmail author
Original Article

Abstract

Purpose

White matter tracts link different regions of the brain, and the known functions of those interconnected regions may offer clues about the roles that white matter tracts play in information relay. The authors of this report discuss the structure and function of the lateral occipital lobe and how the lateral occipital lobe communicates with other regions via white matter tracts.

Methods

The authors used generalized q-sampling imaging and cadaveric brain dissections to uncover the subcortical white matter connections of the lateral occipital lobe. The authors created GQI of ten healthy controls and dissected ten cadaveric brains.

Results

The middle longitudinal fasciculus, vertical occipital fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiations, and a diverse array of U-shaped fibers connect the lateral occipital lobe to itself, parts of the temporal, parietal, and medial occipital cortices. The complex functional processes attributed to the lateral occipital lobe, including object recognition, facial recognition, and motion perception are likely related to the subcortical white matter tracts described within this study.

Conclusions

There was good concordance between the white matter tracts generated using GQI and the white matter tracts that were found after dissection of the cadaveric brains. This article presents the anatomic connections of the lateral occipital lobe and discusses the associated functions.

Keywords

Anatomy DSI Occipital lobe Tractography White matter 

Notes

Acknowledgements

There are no acknowledgements for this paper. There are no conflicts of interests related to the contents of this paper.

Author contributions

AP manuscript, data collection; KO manuscript, data collection; PP manuscript, data collection; RB manuscript, data collection; CM manuscript; AC manuscript; TM literature review; DO materials and methods; CG manuscript; MS manuscript and PI

References

  1. 1.
    Alves RV, Ribas GC, Parraga RG et al (2012) The occipital lobe convexity sulci and gyri. J Neurosurg 116:1014–1023PubMedCrossRefGoogle Scholar
  2. 2.
    Amedi A, Jacobson G, Hendler T et al (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212PubMedCrossRefGoogle Scholar
  3. 3.
    Amedi A, Malach R, Hendler T et al (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324PubMedCrossRefGoogle Scholar
  4. 4.
    Ardekani BA, Tabesh A, Sevy S et al (2011) Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 1: introduction, methods, and significance. Oper Neurosurg 15:1–9CrossRefGoogle Scholar
  6. 6.
    Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 9: the occipital lobe. Oper Neurosurg (Hagerstown) 15:372–406CrossRefGoogle Scholar
  7. 7.
    Bankson BB, Hebart MN, Groen IIA et al (2018) The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks. Neuroimage 178:172–182PubMedCrossRefGoogle Scholar
  8. 8.
    Bernard F, Lemée J-M, Ter Minassian A et al (2018) Right hemisphere cognitive functions: from clinical and anatomic bases to brain mapping during awake craniotomy part i: clinical and functional anatomy. World Neurosurg 118:348–359PubMedCrossRefGoogle Scholar
  9. 9.
    Bernstein M, Erez Y, Blank I et al (2018) An integrated neural framework for dynamic and static face processing. Sci Rep 8:7036PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Briggs RG, Conner AK, Sali G et al (2018) A connectomic atlas of the human cerebrum-chapter 16: tractographic description of the vertical occipital fasciculus. Oper Neurosurg (Hagerstown) 15:456–461CrossRefGoogle Scholar
  11. 11.
    Britten KH, Heuer HW (1999) Spatial summation in the receptive fields of MT neurons. J Neurosci 19:5074–5084PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Budisavljevic S, Dell’acqua F, Castiello U (2018) Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex 103:224–239PubMedCrossRefGoogle Scholar
  13. 13.
    De Witt Hamer PC, Moritz-Gasser S, Gatignol P et al (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 32:962–973PubMedCrossRefGoogle Scholar
  14. 14.
    Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569–574CrossRefGoogle Scholar
  15. 15.
    Giovannelli F, Giganti F, Righi S et al (2016) Audio-visual integration effect in lateral occipital cortex during an object recognition task: an interference pilot study. Brain Stimul 9:574–576PubMedCrossRefGoogle Scholar
  16. 16.
    Goebel R, Muckli L, Zanella FE et al (2001) Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res 41:1459–1474PubMedCrossRefGoogle Scholar
  17. 17.
    Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedCrossRefGoogle Scholar
  18. 18.
    Goodale MA, Milner AD (2018) Two visual pathways where have they taken us and where will they lead in future? Cortex 98:283–292PubMedCrossRefGoogle Scholar
  19. 19.
    Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422PubMedCrossRefGoogle Scholar
  20. 20.
    Grill-Spector K, Kushnir T, Edelman S et al (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Haxby JV, Grady CL, Horwitz B et al (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci 88:1621PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hebart MN, Hesselmann G (2012) What visual information is processed in the human dorsal stream? J Neurosci 32:8107–8109PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    James TW, Culham J, Humphrey GK et al (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    James TW, Humphrey GK, Gati JS et al (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40:1706–1714PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kanwisher N, Mcdermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kourtzi Z, Erb M, Grodd W et al (2003) Representation of the perceived 3-D object shape in the human lateral occipital complex. Cerebral Cortex 13:911–920PubMedCrossRefGoogle Scholar
  27. 27.
    Lacey S, Sathian K (2014) Visuo-haptic multisensory object recognition, categorization, and representation. Front Psychol 5:730PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lemee JM, Bernard F, Ter Minassian A et al (2018) Right Hemisphere Cognitive Functions: from Clinical and Anatomical Bases to Brain Mapping During Awake Craniotomy. Part II: Neuropsychological Tasks and Brain Mapping. World Neurosurg 118:360–367PubMedCrossRefGoogle Scholar
  29. 29.
    Lerner Y, Hendler T, Ben-Bashat D et al (2001) A Hierarchical Axis of Object Processing Stages in the Human Visual Cortex. Cereb Cortex 11:287–297PubMedCrossRefGoogle Scholar
  30. 30.
    Makris N, Preti MG, Asami T et al (2013) Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 218:951–968PubMedCrossRefGoogle Scholar
  31. 31.
    Makris N, Preti MG, Wassermann D et al (2013) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7:335–352PubMedCrossRefGoogle Scholar
  32. 32.
    Malach R, Reppas JB, Benson RR et al (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedCrossRefGoogle Scholar
  33. 33.
    Maldonado IL, De Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Margalit E, Shah MP, Tjan BS et al (2016) The Lateral Occipital Complex shows no net response to object familiarity. J Vis 16:3–3PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Menjot De Champfleur N, Lima Maldonado I, Moritz-Gasser S et al (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157PubMedCrossRefGoogle Scholar
  36. 36.
    Nagy K, Greenlee M, Kovács G (2012) The lateral occipital cortex in the face perception network: an effective connectivity study. Front Psychol.  https://doi.org/10.3389/fpsyg.2012.00141 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Niemeier M, Goltz HC, Kuchinad A et al (2005) A Contralateral Preference in the Lateral Occipital Area: sensory and Attentional Mechanisms. Cereb Cortex 15:325–331PubMedCrossRefGoogle Scholar
  38. 38.
    Oishi H, Takemura H, Aoki SC et al (2018) Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci USA 115:12289–12294PubMedCrossRefGoogle Scholar
  39. 39.
    Panesar SS, Yeh FC, Jacquesson T et al (2018) A Quantitative Tractography Study Into the Connectivity, Segmentation and Laterality of the Human Inferior Longitudinal Fasciculus. Front Neuroanat 12:47PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rokem A, Takemura H, Bock AS et al (2017) The visual white matter: the application of diffusion MRI and fiber tractography to vision science. J Vis 17:4PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rosa MG, Palmer SM, Gamberini M et al (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29:4548–4563PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Seltzer B, Pandya DN (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res 55:301–312PubMedCrossRefGoogle Scholar
  43. 43.
    Smith SM, Beckmann CF, Andersson J et al (2013) Resting-state fMRI in the Human Connectome Project. NeuroImage 80:144–168PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Stilla R, Sathian K (2008) Selective visuo-haptic processing of shape and texture. Hum Brain Mapp 29:1123–1138PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cognit Neurosci 23:4122–4137CrossRefGoogle Scholar
  46. 46.
    Thiebaut De Schotten M, Dell’acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246PubMedCrossRefGoogle Scholar
  47. 47.
    Tootell RB, Reppas JB, Kwong KK et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wall MB, Lingnau A, Ashida H et al (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757PubMedCrossRefGoogle Scholar
  49. 49.
    Wang Y, Fernandez-Miranda JC, Verstynen T et al (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356PubMedCrossRefGoogle Scholar
  50. 50.
    Wu Y, Sun D, Wang Y et al (2016) Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking. Front Neuroanat 10:88PubMedPubMedCentralGoogle Scholar
  51. 51.
    Wu Y, Sun D, Wang Y et al (2016) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159PubMedCrossRefGoogle Scholar
  52. 52.
    Wysiadecki G, Clarke E, Polguj M et al (2018) Klingler’s method of brain dissection: review of the technique including its usefulness in practical neuroanatomy teaching, neurosurgery and neuroimaging. Folia Morphol 78:455–466CrossRefGoogle Scholar
  53. 53.
    Yeatman JD, Weiner KS, Pestilli F et al (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci USA 111:E5214–E5223PubMedCrossRefGoogle Scholar
  54. 54.
    Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Ali H. Palejwala
    • 1
  • Kyle P. O’Connor
    • 1
  • Panayiotis Pelargos
    • 1
  • Robert G. Briggs
    • 1
  • Camille K. Milton
    • 1
  • Andrew K. Conner
    • 1
  • Ty M. Milligan
    • 1
  • Daniel L. O’Donoghue
    • 2
  • Chad A. Glenn
    • 1
  • Michael E. Sughrue
    • 3
    Email author
  1. 1.Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  3. 3.Department of NeurosurgeryPrince of Wales Private HospitalRandwickAustralia

Personalised recommendations