Advertisement

Surgical and Radiologic Anatomy

, Volume 40, Issue 11, pp 1197–1208 | Cite as

Stereoscopic visual area connectivity: a diffusion tensor imaging study

  • Francis Abed Rabbo
  • Guillaume Koch
  • Christian Lefèvre
  • Romuald Seizeur
Original Article
  • 30 Downloads

Abstract

Purpose

To study the white matter tracts connecting the different stereoscopic visual areas of the brain by diffusion tensor imaging.

Methods

In a previous study, we identified the cortical activations to a visual 3D stimulation in 12 subjects using functional MRI (fMRI). These areas of cortical activations [V5, V6, lateral occipital complex (LOC) and intra parietal sulcus areas (IPS)] in addition to the lateral geniculate nucleus (LGN) and the primary visual area V1 were chosen as regions of interest (ROIs). We studied by deterministic tractography the connections existing between these ROIs.

Results

Found connections were divided into three groups. The first group entails the geniculo-extrastriate connections. LGN was connected to V5, V6, IPS and LOC. These fibers course in the inferior longitudinal fascicule. The second group comprises the associative fibers. V1 was connected to V5 and LOC through the transverse occipital fascicule on one hand, and, to V6 and IPS through the stratum proprium cuni on the other hand. Connections between V5 and LOC, and V6 and IPS course within the vertical occipital fascicule. The third group contains commissural fibers. Forceps major entailed the connections between both V1, both V6, both IPS and IPS and contralateral V6. LGN was connected to contralateral LGN, V1, V6, IPS and LOC.

Conclusions

We have elucidated numerous connections between the visual areas and the LGN. Generalization of these results to the remainder of the population must remain prudent due to the limited number of subjects in this study.

Keywords

3D or stereoscopic vision Visual cortex White matter Diffusion tensor imaging Functional MRI 

Notes

Acknowledgements

MR imaging was performed with the technical help of Neurinfo ®, Rennes.

Author contributions

FAR Project development, Data management and analysis, and Manuscript writing/editing. GK Project development, Data collection, management, and analysis, and Manuscript editing. CL Manuscript writing/editing. RS Project development and Manuscript writing/editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Abed Rabbo F, Koch G, Lefèvre C, Seizeur R (2015) Direct geniculo-extrastriate pathways: a review of the literature. Surg Radiol Anat 37:891–899CrossRefGoogle Scholar
  2. 2.
    Axer H, Beck S, Axer M et al (2011) Microstructural analysis of human white matter architecture using polarized light imaging: views from neuroanatomy. Front Neuroinform 5:28PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bridge H, Hicks SL, Xie J et al (2010) Visual activation of extra-striate cortex in the absence of V1 activation. Neuropsychologia 48:4148–4154CrossRefGoogle Scholar
  4. 4.
    Bridge H, Thomas O, Jbabdi S, Cowey A (2008) Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131:1433–1444CrossRefGoogle Scholar
  5. 5.
    Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107CrossRefGoogle Scholar
  6. 6.
    Dejerine JJ, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Rueff, ChicagoGoogle Scholar
  7. 7.
    Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550CrossRefGoogle Scholar
  8. 8.
    Durand JB, Peeters R, Norman JF, Todd JT, Orban GA (2009) Parietal regions processing visual 3d shape extracted from disparity. Neuroimage 46:1114–1126CrossRefGoogle Scholar
  9. 9.
    Fattori P, Pitzalis S, Galletti C (2009) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103:88–97CrossRefGoogle Scholar
  10. 10.
    Fernandez-Miranda JC, Rhoton ALJ, Alvarez-Linera J, Kakizawa Y, Choi C, De Oliveira EP (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026; (discussion 1026)CrossRefGoogle Scholar
  11. 11.
    Frey SH (2007) What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex 43:368–375CrossRefGoogle Scholar
  12. 12.
    Goodale MA, Humphrey GK (1998) The objects of action and perception. Cognition 67:181–207CrossRefGoogle Scholar
  13. 13.
    Koch G, Bannier E, Baumann A et al (2013) 3d visual fMRI using binocular stimulation. In: ESMRMB 3–5 Octobre 2013 ToulouseGoogle Scholar
  14. 14.
    Ludwig E, Klinger J, Jabonero V (1956) Atlas Cerebri Humani: Der Innere Bau Des Gehirns. In: Karger SGoogle Scholar
  15. 15.
    Magro E, Moreau T, Seizeur R, Zemmoura I, Gibaud B, Morandi X (2014) Connectivity within the primary motor cortex: a DTI tractography study. Surg Radiol Anat 36:125–135CrossRefGoogle Scholar
  16. 16.
    Maldonado IL, Mandonnet E, Duffau H (2012) Dorsal fronto-parietal connections of the human brain: a fiber dissection study of their composition and anatomical relationships. Anat Rec (Hoboken) 295:187–195CrossRefGoogle Scholar
  17. 17.
    Mandelstam SA (2012) Challenges of the anatomy and diffusion tensor tractography of the meyer loop. AJNR Am J Neuroradiol 33:1204–1210CrossRefGoogle Scholar
  18. 18.
    Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111:601–605CrossRefGoogle Scholar
  19. 19.
    Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785CrossRefGoogle Scholar
  20. 20.
    Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends in neurosciences 6:414–417CrossRefGoogle Scholar
  21. 21.
    Mori S, Van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480CrossRefGoogle Scholar
  22. 22.
    Orssaud C (2006) Vision Binoculaire. Encycl Méd Chir. Elsevier, Paris (Ophtalmologie 1–10 [Article 21])Google Scholar
  23. 23.
    Peltier J, Travers N, Destrieux C, Velut S (2006) Optic radiations: a microsurgical anatomical study. J Neurosurg 105:294–300CrossRefGoogle Scholar
  24. 24.
    Pöppel E, Held R, Frost D (1973) Residual visual function after brain wounds involving the central visual pathways in man. Nature 243:295CrossRefGoogle Scholar
  25. 25.
    Rajimehr R, Tootell RB (2007) Organization of human visual cortex. The senses: a comprehensive reference 1:595–614Google Scholar
  26. 26.
    Ramachandran VS (2002) Encyclopedia of the human brain. Academic Press, New YorkGoogle Scholar
  27. 27.
    Reiser MF, Semmler W, Hricak H (2008) Magnetic resonance tomography. Springer, New YorkCrossRefGoogle Scholar
  28. 28.
    Richards W (1973) Visual processing in scotomata. Exp Brain Res 17:333–347CrossRefGoogle Scholar
  29. 29.
    Riddoch G (1917) On the relative perceptions of movement and a stationary object in certain visual disturbances due to occipital injuries. Proc R Soc Med 10:13PubMedPubMedCentralGoogle Scholar
  30. 30.
    Salvolini U, Scarabino T (2006) High field brain MRI: use in clinical practice. Springer, New YorkCrossRefGoogle Scholar
  31. 31.
    Seizeur R, Wiest-Daessle N, Prima S, Maumet C, Ferre JC, Morandi X (2012) Corticospinal tractography with morphological, functional and diffusion tensor mri: a comparative study of four deterministic algorithms used in clinical routine. Surg Radiol Anat 34:709–719CrossRefGoogle Scholar
  32. 32.
    Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural Mr image analysis and implementation as Fsl. Neuroimage 23(Suppl 1):S208–S219CrossRefGoogle Scholar
  33. 33.
    Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97:709–728CrossRefGoogle Scholar
  34. 34.
    Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) Mr tractography: a review of its clinical applications. Magn Reson Med Sci 8:165–174CrossRefGoogle Scholar
  35. 35.
    Yamamoto A, Miki Y, Urayama S et al (2007) Diffusion tensor fiber tractography of the optic radiation: analysis with 6-, 12-, 40-, and 81-directional motion-probing gradients, a preliminary study. Am J Neuroradiol 28:92–96PubMedGoogle Scholar
  36. 36.
    Yeh F-C, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng W-YI (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS One 8:e80713CrossRefGoogle Scholar
  37. 37.
    Yukie M, Iwai E (1981) Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. J Comp Neurol 201:81–97CrossRefGoogle Scholar
  38. 38.
    Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311CrossRefGoogle Scholar
  39. 39.
    Zemmoura I, Serres B, Andersson F et al (2014) Fibrascan: a novel method for 3d white matter tract reconstruction in Mr space from cadaveric dissection. Neuroimage 103:106–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’AnatomieUniversité de BrestBrestFrance
  2. 2.Laboratoire de Traitement de l’information Médicale, LaTIM UMR1101BrestFrance
  3. 3.Service de Neurochirurgie, Pôle NeurolocomoteurCHU Cavale Blanche. CHRU BrestBrestFrance
  4. 4.Institut d’Anatomie NormaleUniversité de StrasbourgStrasbourgFrance
  5. 5.Service d’imagerie InterventionnelleCHRU StrasbourgStrasbourgFrance
  6. 6.Service d’OrthopédieHôpital Cavale Blanche, CHRU BrestBrestFrance

Personalised recommendations