Surgical and Radiologic Anatomy

, Volume 39, Issue 8, pp 849–857 | Cite as

Pelvic and lower extremity physiological cross-sectional areas: an MRI study of the living young and comparison to published research literature

  • Juliane Lube
  • Natasha A. M. S. Flack
  • Sebastian Cotofana
  • Orkun Özkurtul
  • Stephanie J. Woodley
  • Stefan Zachow
  • Niels HammerEmail author
Original Article



Morphological data pertaining to the pelvis and lower extremity muscles are increasingly being used in biomechanical modeling to compare healthy and pathological conditions. Very few data sets exist that encompass all of the muscles of the lower limb, allowing for comparisons between regions. The aims of this study were to (a) provide physiological cross-sectional area (PCSA) data for the pelvic, thigh, and leg muscles in young, healthy participants, using magnetic resonance imaging (MRI), and (b) to compare these data with summarized PCSAs obtained from the literature.

Materials and methods

Six young and healthy volunteers participated and were scanned using 3 T MRI. PCSAs were calculated from volumetric segmentations obtained bilaterally of 28 muscles/muscle groups of the pelvis, thigh, and leg. These data were compared to published, summarized PCSA data derived from cadaveric, computed tomography, MRI and ultrasound studies.


The PCSA of the pelvis, thigh, and leg muscles tended to be 20–130% larger in males than in females, except for the gemelli which were 34% smaller in males, and semitendinosus and triceps surae which did not differ (<20% different). The dominant and the non-dominant sides showed similar and minutely different PCSA with less than 18% difference between sides. Comparison to other studies revealed wide ranges within, and large differences between, the cadaveric and imaging PCSA data. Comparison of the PCSA of this study and published literature revealed major differences in the iliopsoas, gluteus minimus, tensor fasciae latae, gemelli, obturator internus, biceps femoris, quadriceps femoris, and the deep leg flexor muscles.


These volume-derived PCSAs of the pelvic and lower limb muscles alongside the data synthesised from the literature may serve as a basis for comparative and biomechanical studies of the living and healthy young, and enable calculation of muscle forces. Comparison of the literature revealed large variations in PCSA from each of the different investigative modalities, hampering comparability between studies. Sample size, age, post-mortem changes of muscle tone, chemical fixation of cadaveric tissues, and the underlying physics of the imaging techniques may potentially influence PCSA calculations.


3 Telsa magnetic resonance imaging Leg Living young Lower extremity PCSA Pelvis Thigh Segmentation Volume 



The authors would like to thank Heike Röder who helped to record the MRI data sets and Dagmar Kainmüller for her assistance to verify the results. We also greatly acknowledge Wolfgang Kummer and the Chihiro and Kiyoko Yokochi Fund for providing a travel scholarship to NH.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest related to this study.

Supplementary material

276_2016_1807_MOESM1_ESM.docx (109 kb)
Supplementary material 1 (DOCX 109 KB)
276_2016_1807_MOESM2_ESM.docx (88 kb)
Supplementary material 2 (DOCX 88 KB)
276_2016_1807_MOESM3_ESM.docx (33 kb)
Supplementary material 3 (DOCX 32 KB)
276_2016_1807_MOESM4_ESM.docx (29 kb)
Supplementary material 4 (DOCX 29 KB)
276_2016_1807_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 14 KB)


  1. 1.
    Abe T, Loenneke JP, Thiebaud RS (2015) Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review. Ultrasound 23:166–173. doi: 10.1177/1742271X15587599 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Akima H, Kubo K, Imai M, Kanehisa H, Suzuki Y, Gunji A, Fukunaga T (2001) Inactivity and muscle: effect of resistance training during bed rest on muscle size in the lower limb. Acta Physiol Scand 172:269–278. doi: 10.1046/j.1365-201x.2001.00869.x CrossRefPubMedGoogle Scholar
  3. 3.
    Akima H, Kubo K, Kanehisa H, Suzuki Y, Gunji A, Fukunaga T (2000) Leg-press resistance training during 20 days of 6 degrees head-down-tilt bed rest prevents muscle deconditioning. Eur J Appl Physiol 82:30–38. doi: 10.1007/s004210050648 CrossRefPubMedGoogle Scholar
  4. 4.
    Akima H, Kuno S, Suzuki Y, Gunji A, Fukunaga T (1997) Effects of 20 days of bed rest on physiological cross-sectional area of human thigh and leg muscles evaluated by magnetic resonance imaging. J Gravit Physiol 4:S15–S21PubMedGoogle Scholar
  5. 5.
    Albracht K, Arampatzis A, Baltzopoulos V (2008) Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech 41:2211–2218. doi: 10.1016/j.jbiomech.2008.04.020 CrossRefPubMedGoogle Scholar
  6. 6.
    Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38:269–279. doi: 10.1007/s10439-009-9852-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32:1307–1313CrossRefPubMedGoogle Scholar
  8. 8.
    Barker PJ, Hapuarachchi KS, Ross JA, Sambaiew E, Ranger TA, Briggs CA (2014) Anatomy and biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint. Clin Anat 27:234–240. doi: 10.1002/ca.22233 CrossRefPubMedGoogle Scholar
  9. 9.
    Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol (1985) 103:1565–1575. doi: 10.1152/japplphysiol.00578.2007 CrossRefGoogle Scholar
  10. 10.
    Böhme J, Lingslebe U, Steinke H, Werner M, Slowik V, Josten C, Hammer N (2014) The extent of ligament injury and its influence on pelvic stability following type II anteroposterior compression pelvic injuries—a computer study to gain insight into open book trauma. J Orthop Res 32:873–879. doi: 10.1002/jor.22618 CrossRefPubMedGoogle Scholar
  11. 11.
    Böhme J, Steinke H, Huelse R, Hammer N, Klink T, Slowik V, Josten C (2011) [Complex ligament instabilities after “open book"-fractures of the pelvic ring-finite element computer simulation and crack simulation]. Z Orthop Unfall 149:83–89. doi: 10.1055/s-0030-1250471 CrossRefPubMedGoogle Scholar
  12. 12.
    Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM (1982) A model of lower extremity muscular anatomy. J Biomech Eng 104:304–310CrossRefPubMedGoogle Scholar
  13. 13.
    Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech 19:589–596CrossRefPubMedGoogle Scholar
  14. 14.
    Buytaert J, Goyens J, De Greef D, Aerts P, Dirckx J (2014) Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM). Microsc Microanal 20:1208–1217. doi: 10.1017/S1431927614001329 CrossRefPubMedGoogle Scholar
  15. 15.
    Campbell EL, Seynnes OR, Bottinelli R, McPhee JS, Atherton PJ, Jones DA, Butler-Browne G, Narici MV (2013) Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology 14:247–259. doi: 10.1007/s10522-013-9427-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen WM, Park J, Park SB, Shim VP, Lee T (2012) Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise—a 3D finite element analysis. J Biomech 45:1783–1789. doi: 10.1016/j.jbiomech.2012.04.024 CrossRefPubMedGoogle Scholar
  17. 17.
    Cheuy VA, Commean PK, Hastings MK, Mueller MJ (2013) Reliability and validity of a MR-based volumetric analysis of the intrinsic foot muscles. J Magn Reson Imaging 38:1083–1093. doi: 10.1002/jmri.24069 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cleather DJ, Bull AM (2015) The development of a segment-based musculoskeletal model of the lower limb: introducing FreeBody. R Soc Open Sci 2:140449. doi: 10.1098/rsos.140449 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Csapo R, Maganaris CN, Seynnes OR, Narici MV (2010) On muscle, tendon and high heels. J Exp Biol 213:2582–2588. doi: 10.1242/jeb.044271 CrossRefPubMedGoogle Scholar
  20. 20.
    Eichenseer PH, Sybert DR, Cotton JR (2011) A finite element analysis of sacroiliac joint ligaments in response to different loading conditions. Spine (Phila Pa 1976) 36:E1446–E1452. doi: 10.1097/BRS.0b013e31820bc705 CrossRefGoogle Scholar
  21. 21.
    Elabjer E, Nikolic V, Matejcic A, Stancic M, Kuzmanovic Elabjer B (2009) Analysis of muscle forces acting on fragments in pelvic fractures. Coll Antropol 33:1095–1101PubMedGoogle Scholar
  22. 22.
    Erskine RM, Jones DA, Maganaris CN, Degens H (2009) In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol 106:827–838. doi: 10.1007/s00421-009-1085-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Flack NA, Nicholson HD, Woodley SJ (2014) The anatomy of the hip abductor muscles. Clin Anat 27:241–253. doi: 10.1002/ca.22248 CrossRefPubMedGoogle Scholar
  24. 24.
    Fortin M, Videman T, Gibbons LE, Battie MC (2014) Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc 46:893–901. doi: 10.1249/MSS.0000000000000179 CrossRefPubMedGoogle Scholar
  25. 25.
    Freiwalde A (1985) Incorporation of Active Elements into the Articulated Total Body Model. Pennsylvania State Univ University Park Dept of Industrial and Management Systems EngineeringGoogle Scholar
  26. 26.
    Friederich JA, Brand RA (1990) Muscle fiber architecture in the human lower limb. J Biomech 23:91–95CrossRefPubMedGoogle Scholar
  27. 27.
    Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10:928–934. doi: 10.1002/jor.1100100623 CrossRefPubMedGoogle Scholar
  28. 28.
    Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Edgerton VR (1996) Specific tension of human plantar flexors and dorsiflexors. J Appl Physiol (1985) 80:158–165PubMedGoogle Scholar
  29. 29.
    Hammer N, Steinke H, Lingslebe U, Bechmann I, Josten C, Slowik V, Böhme J (2013) Ligamentous influence in pelvic load distribution. Spine J 13:1321–1330. doi: 10.1016/j.spinee.2013.03.050 CrossRefPubMedGoogle Scholar
  30. 30.
    Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS (2014) Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech 47:631–638. doi: 10.1016/j.jbiomech.2013.12.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Heimkes B, Posel P, Plitz W, Jansson V (1993) Forces acting on the juvenile hip joint in the one-legged stance. J Pediatr Orthop 13:431–436CrossRefPubMedGoogle Scholar
  32. 32.
    Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 26:26–32PubMedGoogle Scholar
  33. 33.
    Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, Imai M, Suzuki Y, Gunji A, Kanehisa H, Fukunaga T (2001) Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 84:7–12. doi: 10.1007/s004210000330 CrossRefPubMedGoogle Scholar
  34. 34.
    Kawakami Y, Muraoka Y, Kubo K, Suzuki Y, Fukunaga T (2000) Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol 7:53–59PubMedGoogle Scholar
  35. 35.
    Kawashima S, Akima H, Kuno SY, Gunji A, Fukunaga T (2004) Human adductor muscles atrophy after short duration of unweighting. Eur J Appl Physiol 92:602–605. doi: 10.1007/s00421-004-1184-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Klein Horsman MD (2007) The Twente lower extremity model consistent dynamic simulation of the human locomotor apparatus (Het Twentse Onderste Extremiteiten Model: Consistente Dynamische Simulatie van het Menselijke Bewegingsapparataat). Universiteit TwenteGoogle Scholar
  37. 37.
    Klein Horsman MD, Koopman HF, van der Helm FC, Prose LP, Veeger HE (2007) Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech (Bristol Avon) 22:239–247. doi: 10.1016/j.clinbiomech.2006.10.003 CrossRefGoogle Scholar
  38. 38.
    Lachowitzer MR, Ranes A, Yamaguchi GT (2007) Musculotendon parameters and musculoskeletal pathways within the human foot. J Appl Biomech 23:20–41CrossRefPubMedGoogle Scholar
  39. 39.
    Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666CrossRefPubMedGoogle Scholar
  40. 40.
    Lindemann U, Mohr C, Machann J, Blatzonis K, Rapp K, Becker C (2016) Association between thigh muscle volume and leg muscle power in older women. PLoS One 11:e0157885. doi: 10.1371/journal.pone.0157885 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lube J, Cotofana S, Bechmann I, Milani TL, Özkurtul O, Sakai T, Steinke H, Hammer N (2015) Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study. Surg Radiol Anat. doi: 10.1007/s00276-015-1526-4 PubMedGoogle Scholar
  42. 42.
    Majumder S, Roychowdhury A, Pal S (2007) Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Med Eng Phys 29:1167–1178. doi: 10.1016/j.medengphy.2006.11.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC (2010) Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 14:362–366CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Matschke V, Murphy P, Lemmey AB, Maddison PJ, Thom JM (2010) Muscle quality, architecture, and activation in cachectic patients with rheumatoid arthritis. J Rheumatol 37:282–284. doi: 10.3899/jrheum.090584 CrossRefPubMedGoogle Scholar
  45. 45.
    Maughan RJ (1984) Relationship between muscle strength and muscle cross-sectional area. Implications for training. Sports Med 1:263–269CrossRefPubMedGoogle Scholar
  46. 46.
    Mersmann F, Bohm S, Schroll A, Boeth H, Duda G, Arampatzis A (2015) Muscle shape consistency and muscle volume prediction of thigh muscles. Scand J Med Sci Sports 25:e208–e213. doi: 10.1111/sms.12285 CrossRefPubMedGoogle Scholar
  47. 47.
    Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353–359CrossRefPubMedGoogle Scholar
  48. 48.
    Morse CI, Thom JM, Birch KM, Narici MV (2005) Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand 183:291–298. doi: 10.1111/j.1365-201X.2004.01404.x CrossRefPubMedGoogle Scholar
  49. 49.
    Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol (1985) 99:1050–1055. doi: 10.1152/japplphysiol.01186.2004 CrossRefGoogle Scholar
  50. 50.
    Müller M, Dewey M, Springer I, Perka C, Tohtz S (2010) Relationship between cup position and obturator externus muscle in total hip arthroplasty. J Orthop Surg Res 5:44. doi: 10.1186/1749-799X-5-44 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Narici MV, Maganaris CN, Reeves ND, Capodaglio P (2003) Effect of aging on human muscle architecture. J Appl Physiol (1985) 95:2229–2234. doi: 10.1152/japplphysiol.00433.2003 CrossRefGoogle Scholar
  52. 52.
    Noguchi M, Furuya S, Takeuchi T, Hirohashi S (1997) Modified formalin and methanol fixation methods for molecular biological and morphological analyses. Pathol Int 47:685–691CrossRefPubMedGoogle Scholar
  53. 53.
    Pal S, Langenderfer JE, Stowe JQ, Laz PJ, Petrella AJ, Rullkoetter PJ (2007) Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann Biomed Eng 35:1632–1642. doi: 10.1007/s10439-007-9334-6 CrossRefPubMedGoogle Scholar
  54. 54.
    Panizzolo FA, Maiorana AJ, Naylor LH, Lichtwark GA, Dembo L, Lloyd DG, Green DJ, Rubenson J (2015) Is the soleus a sentinel muscle for impaired aerobic capacity in heart failure? Med Sci Sports Exerc 47:498–508. doi: 10.1249/MSS.0000000000000431 CrossRefPubMedGoogle Scholar
  55. 55.
    Pierrynowski MR (1982) A physiological model for the solution of individual muscle forces during normal human walking. Doctoral Thesis, Simon Fraser UniversityGoogle Scholar
  56. 56.
    Reeves ND, Narici MV, Maganaris CN (2004) Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol (1985) 96:885–892. doi: 10.1152/japplphysiol.00688.2003 CrossRefGoogle Scholar
  57. 57.
    Sheehan FT (2012) The 3D in vivo Achilles’ tendon moment arm, quantified during active muscle control and compared across sexes. J Biomech 45:225–230. doi: 10.1016/j.jbiomech.2011.11.001 CrossRefPubMedGoogle Scholar
  58. 58.
    Sichting F, Rossol J, Soisson O, Klima S, Milani T, Hammer N (2014) Pelvic belt effects on sacroiliac joint ligaments: a computational approach to understand therapeutic effects of pelvic belts. Pain Physician 17:43–51PubMedGoogle Scholar
  59. 59.
    Skorupska E, Keczmer P, Lochowski RM, Tomal P, Rychlik M, Samborski W (2016) Reliability of MR-based volumetric 3-D analysis of pelvic muscles among subjects with low back with leg pain and healthy volunteers. PLoS One 11:e0159587. doi: 10.1371/journal.pone.0159587 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3:118–130CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Steinbruck A, Woiczinski M, Weber P, Muller PE, Jansson V, Schroder C (2014) Posterior cruciate ligament balancing in total knee arthroplasty: a numerical study with a dynamic force controlled knee model. Biomed Eng Online 13:91. doi: 10.1186/1475-925X-13-91 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Steinke H, Hammer N, Lingslebe U, Hoch A, Klink T, Böhme J (2014) Ligament-induced sacral fractures of the pelvis are possible. Clin Anat 27:770–777. doi: 10.1002/ca.22312 CrossRefPubMedGoogle Scholar
  63. 63.
    Takizawa M, Suzuki D, Ito H, Fujimiya M, Uchiyama E (2014) Why adductor magnus muscle is large: the function based on muscle morphology in cadavers. Scand J Med Sci Sports 24:197–203. doi: 10.1111/j.1600-0838.2012.01466.x CrossRefPubMedGoogle Scholar
  64. 64.
    Tate CM, Williams GN, Barrance PJ, Buchanan TS (2006) Lower extremity muscle morphology in young athletes: an MRI-based analysis. Med Sci Sports Exerc 38:122–128CrossRefPubMedGoogle Scholar
  65. 65.
    Tate CM, Williams GN, Barrance PJ, Buchanan TS (2006) Lower extremity muscle morphology in young athletes: an MRI-based analysis. Med Sci Sports Exerc 38:122–128. doi: 10.1249/01.mss.0000179400.67734.01 CrossRefPubMedGoogle Scholar
  66. 66.
    Tomlinson DJ, Erskine RM, Winwood K, Morse CI, Onambele GL (2014) The impact of obesity on skeletal muscle architecture in untrained young vs. old women. J Anat 225:675–684. doi: 10.1111/joa.12248 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Viceconti M, Clapworthy G, Van Sint Jan S (2008) The Virtual Physiological Human—a European initiative for in silico human modelling. J Physiol Sci 58:441–446. doi: 10.2170/physiolsci.RP009908 CrossRefPubMedGoogle Scholar
  68. 68.
    Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467:1074–1082. doi: 10.1007/s11999-008-0594-8 CrossRefPubMedGoogle Scholar
  69. 69.
    Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res:275–283Google Scholar
  70. 70.
    Woodley SJ, Mercer SR (2005) Hamstring muscles: architecture and innervation. Cells Tissues Organs 179:125–141. doi: 10.1159/000085004 CrossRefPubMedGoogle Scholar
  71. 71.
    Zacharias C, Alessio AM, Otto RK, Iyer RS, Philips GS, Swanson JO, Thapa MM (2013) Pediatric CT: strategies to lower radiation dose. AJR Am J Roentgenol 200:950–956. doi: 10.2214/AJR.12.9026 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  • Juliane Lube
    • 1
  • Natasha A. M. S. Flack
    • 2
  • Sebastian Cotofana
    • 3
  • Orkun Özkurtul
    • 4
  • Stephanie J. Woodley
    • 2
  • Stefan Zachow
    • 5
  • Niels Hammer
    • 1
    • 2
    Email author
  1. 1.Department of Anatomy, Faculty of MedicineUniversity of LeipzigLeipzigGermany
  2. 2.Department of AnatomyUniversity of OtagoDunedinNew Zealand
  3. 3.Department of AnatomyRoss University School of MedicineRoseauDominica
  4. 4.Department of Orthopedic, Trauma and Plastic SurgeryUniversity of LeipzigLeipzigGermany
  5. 5.Visualization and Data AnalysisZuse Institute BerlinBerlinGermany

Personalised recommendations