Surgical and Radiologic Anatomy

, Volume 35, Issue 4, pp 343–349

The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy

Original Article



The circumventricular organs (CVOs) occupy seven midline locations around the ventricles. They contain specialized ependymal cells called tanycytes and have an incomplete blood–brain barrier (BBB). We hypothesized that appearances of the lesser known CVOs on contrast-enhanced MRI might lead to confusion in image interpretation whereby they might be mistaken for pathology-related abnormal contrast enhancement. We therefore assessed the normal appearances and prevalence of contrast enhancement of the CVOs on routine clinical brain MRI and reviewed the functional anatomy of the CVOs.


We retrospectively reviewed sagittal and coronal pre- and post-contrast T1-weighted brain 3T MR images in 100 adult patients with normal findings. We assessed the presence of the median eminence (ME), neurohypophysis (NH), pineal gland (PG), subforniceal organ (SFO), organum vasculosum of the lamina terminalis (OVLT), subcommissural organ (SCO), and the area postrema (AP).


The frequency of contrast enhancement of the seven CVOs was as follows: ME in 100 %, NH in 96 %, PG in 84 %, SFO in 1 %, OVLT in 34 %, SCO in 0 %, and AP in 2 %.


The main CVOs (ME, NH, and PG) are well known and appreciated on brain imaging. However, there is a little awareness of the minor CVOs among neuroimagers. This is the first study of contrast enhancement prevalence of the SF, OV, SC, and AP on brain MRI. All the latter are small, faint, rarely visualized, and therefore not likely to cause misinterpretation with significant sources of pathology that cause breakdown of the BBB, such as tumor or inflammation.


Circumventricular organs Blood brain barrier MRI 


  1. 1.
    Altman DG (1991) Mathematics for kappa. In: Altman DG (ed) Practical statistics for medical research, 1st edn. Chapman & Hall, London, pp 406–407Google Scholar
  2. 2.
    Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41:337–347PubMedCrossRefGoogle Scholar
  4. 4.
    Bradley WG Jr (2008) Pros and cons of 3 tesla MRI. J Am Coll Radiol 5:871–878PubMedCrossRefGoogle Scholar
  5. 5.
    Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 6:551–558CrossRefGoogle Scholar
  6. 6.
    Duvernoy H, Risold P (2007) The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 56:119–147PubMedCrossRefGoogle Scholar
  7. 7.
    Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 6:543–549CrossRefGoogle Scholar
  8. 8.
    Fry M, Ferguson AV (2007) The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 91:413–423PubMedCrossRefGoogle Scholar
  9. 9.
    Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427PubMedCrossRefGoogle Scholar
  10. 10.
    Hoyda TD, Smith PM, Ferguson AV (2009) Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes (Lond) 33(Suppl 1):S16–S21CrossRefGoogle Scholar
  11. 11.
    Inoue Y, Saiwai S, Miyamoto T, Katsuyama J (1994) Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 18:182–186PubMedCrossRefGoogle Scholar
  12. 12.
    Johanson CE (2008) Choroid plexus-cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism, and repair. In: Conn PM (ed) Neuroscience in medicine, 3rd edn. Humana Press, Totowa, pp 181–184Google Scholar
  13. 13.
    Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524PubMedCrossRefGoogle Scholar
  14. 14.
    Kubo S, Inui T, Yamazato K (2004) Visualisation of the circumventricular organs by fluorescence endoscopy. J Neurol Neurosurg Psychiatry 75:180PubMedGoogle Scholar
  15. 15.
    Landas S, Fischer J, Wilkin L et al (1985) Demonstration of regional blood-brain barrier permeability in human brain. Neurosci Lett 57:251–256PubMedCrossRefGoogle Scholar
  16. 16.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  17. 17.
    Lawlor D, Stone T (2001) Public health and data protection: an inevitable collision or potential for a meeting of minds? Int J Epidemiol 30:1221–1225PubMedCrossRefGoogle Scholar
  18. 18.
    Macchi V, Porzionato A, Belloni AS, Stecco C, Parenti A, De Caro R (2006) Immunohistochemical mapping of adrenomedullin in the human medulla oblongata. Peptides 27:1397–1404PubMedCrossRefGoogle Scholar
  19. 19.
    McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:III–XII, 1–122Google Scholar
  20. 20.
    Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios JM, Mengod G (2010) The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat 40:36–42PubMedCrossRefGoogle Scholar
  21. 21.
    Porzionato A, Macchi V, Morsut L, Parenti A, De Caro R (2005) Microvascular patterns in human medullary tegmentum at the level of the area postrema. J Anat 206:405–410PubMedCrossRefGoogle Scholar
  22. 22.
    Porzionato A, Macchi V, Parenti A, De Caro R (2004) The distribution of mast cells in the human area postrema. J Anat 204:141–147PubMedCrossRefGoogle Scholar
  23. 23.
    Sato D, Fujihara K (2011) Atypical presentations of neuromyelitis optica. Arq Neuropsiquiatr 69:824–828PubMedCrossRefGoogle Scholar
  24. 24.
    Saunders NR, Liddelow SA, Dziegielewska KM (2012) Barrier mechanisms in the developing brain. Front Pharmacol 3:46PubMedCrossRefGoogle Scholar
  25. 25.
    Schroter S, Plowman R, Hutchings A et al (2006) Reporting ethics committee approval and patient consent by study design in five general medical journals. J Med Ethics 32:718–723PubMedCrossRefGoogle Scholar
  26. 26.
    Shinpo K, Hirai Y, Maezawa H, Totsuka Y, Funahashi M (2012) The role of area postrema neurons expressing H-channels in the induction mechanism of nausea and vomiting. Physiol Behav 107:98–103PubMedCrossRefGoogle Scholar
  27. 27.
    Sisó S, Jeffrey M, González L (2010) Sensory circumventricular organs in health and disease. Acta Neuropathol 120:689–705PubMedCrossRefGoogle Scholar
  28. 28.
    Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085PubMedCrossRefGoogle Scholar
  29. 29.
    Sun B, Tang YC, Fan LZ, Lin XT, Li ZP, Qi HT, Liu SW (2008) The pineal region: thin sectional anatomy with MR correlation in the coronal plane. Surg Radiol Anat 30:575–582PubMedCrossRefGoogle Scholar
  30. 30.
    Williams KD, Dean B, Drayer BP (1990) Demonstration of the area postrema with contrast-enhanced MR. AJNR Am J Neuroradiol 11:733–734PubMedGoogle Scholar
  31. 31.
    Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT (2010) Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflammation 7:70PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2012

Authors and Affiliations

  1. 1.Department of RadiologyAddenbrooke’s HospitalCambridgeUK
  2. 2.The University of CambridgeCambridgeUK

Personalised recommendations