Surgical and Radiologic Anatomy

, Volume 35, Issue 2, pp 115–124 | Cite as

Morphometry and localization of the temporal transverse Heschl’s gyrus in magnetic resonance imaging: a guide for cortical stimulation of chronic tinnitus

  • Emile Simon
  • Xavier Perrot
  • Michel Linne
  • Afif Afif
  • Guillaume Becq
  • Patrick Mertens
Original Article



Subjective tinnitus is considered a phantom auditory phenomenon. Recent studies show that electrical or magnetic stimulation of the cortex can alleviate some tinnitus. The usual target of the stimulation is the primary auditory cortex (PAC) on Heschl’s gyrus (HG). The objective of this study was to specify the anatomy of HG by magnetic resonance imaging (MRI).


Cerebral MRI of 60 patients with chronic tinnitus, carried out before neuronavigated repetitive transcranial magnetic stimulation targeting the auditory cortex, were included. 3D-T1 MRI was reformatted in Talairach–Tournoux’s stereotactic space, then the following steps were performed: morphometry of HG, localization of the probabilistic center of the PAC (pcPAC) chosen at the junction between the medial third and the lateral two-thirds of HG, relative to external and cortical landmarks, and identification of its coordinates relative to the bicommissural line (AC-PC).


In relation to external landmarks, the pcPAC was identified around 5 cm above the root of the helix of the ear in the direction of a point on the vertex located 4 cm behind the coronal suture, for both sides. In Talairach–Tournoux’s stereotactic space with the anterior commissure as the origin, the pcPAC coordinates were x = 43, y = −20, z = 6.8 on the right side, and x = −42.5, y = −21.5, and z = 6.5 on the left. Probabilistic maps of the presence of HG pointed to a relative contraction of data in space, despite inter- and intraindividual differences.


The choice of our stimulation target was established in the middle of the theoretical position of the PAC. MRI allows a reliable identification of the target structure.


Auditory cortex Heschl’s gyrus Tinnitus Cortical stimulation Magnetic resonance imaging Neuronavigation 



This study was part of a clinical trial funded by a PHRC grant (Programme Hospitalier de Recherche Clinique 2004, principal investigator: XP) from the Ministry of Health (France), and by the Hospices Civils de Lyon (Appel d’Offre Jeune Chercheur, to XP). The authors would like to thank Pr François COTTON (Department of Anatomy and Department of Radiology, Lyon Sud Hospital) for providing the MRI, Pr Lionel COLLET (Department of Audiology, Lyon Sud Hospital and INSERM, U1028) and Pr Marc SINDOU (Department of Neurosurgery, Hospital P. Wertheimer) for their advices and reviewing of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current French laws. All patients gave their informed consent for participation in this study, the protocol was accepted by the Ethics Committee of Lyon, France.


  1. 1.
    Bohning DE, Pecheny AP, Epstein CM, Speer AM, Vincent DJ, Dannels W, George MS (1997) Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. NeuroReport 8(11):2535–2538PubMedCrossRefGoogle Scholar
  2. 2.
    Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellaufbaus. Barth, LeipzigGoogle Scholar
  3. 3.
    Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205PubMedCrossRefGoogle Scholar
  4. 4.
    Cotton F, Rozzi FR, Vallee B, Pachai C, Hermier M, Guihard-Costa AM, Froment JC (2005) Cranial sutures and craniometric points detected on MRI. Surg Radiol Anat 27(1):64–70PubMedCrossRefGoogle Scholar
  5. 5.
    De Ridder D, De Mulder G, Verstraeten E, Van der Kelen K, Sunaert S, Smits M, Kovacs S, Verlooy J, Van de Heyning P, Moller AR (2006) Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec 68(1):48–54 discussion 54–45PubMedCrossRefGoogle Scholar
  6. 6.
    De Ridder D, De Mulder G, Walsh V, Muggleton N, Sunaert S, Moller A (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg 100(3):560–564PubMedCrossRefGoogle Scholar
  7. 7.
    De Ridder D, van der Loo E, Van der Kelen K, Menovsky T, van de Heyning P, Moller A (2007) Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci 4(5):237–241PubMedCrossRefGoogle Scholar
  8. 8.
    Eichhammer P, Langguth B, Marienhagen J, Kleinjung T, Hajak G (2003) Neuronavigated repetitive transcranial magnetic stimulation in patients with tinnitus: a short case series. Biol Psychiatry 54(8):862–865PubMedCrossRefGoogle Scholar
  9. 9.
    Evans AC, Marrett S, Neelin P, Collins L, Worsley K, Dai W, Milot S, Meyer E, Bub D (1992) Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1(1):43–53PubMedCrossRefGoogle Scholar
  10. 10.
    Fenoy AJ, Severson MA, Volkov IO, Brugge JF, Howard MA 3rd (2006) Hearing suppression induced by electrical stimulation of human auditory cortex. Brain Res 1118(1):75–83PubMedCrossRefGoogle Scholar
  11. 11.
    Foundas AL, Leonard CM, Heilman KM (1995) Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch Neurol 52(5):501–508PubMedCrossRefGoogle Scholar
  12. 12.
    Fregni F, Marcondes R, Boggio PS, Marcolin MA, Rigonatti SP, Sanchez TG, Nitsche MA, Pascual-Leone A (2006) Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol 13(9):996–1001PubMedCrossRefGoogle Scholar
  13. 13.
    Friedland DR, Gaggl W, Runge-Samuelson C, Ulmer JL, Kopell BH (2007) Feasibility of auditory cortical stimulation for the treatment of tinnitus. Otol Neurotol 28(8):1005–1012PubMedCrossRefGoogle Scholar
  14. 14.
    Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161(837):186–187PubMedCrossRefGoogle Scholar
  15. 15.
    Heschl RL (1878) Ueber die Vordere Quere Schläfenwindung des Menschlichen Grosshirns. Wilhelm Braumüller, ViennaGoogle Scholar
  16. 16.
    Konig R, Heil P, Budinger E, Scheich H (2005) The auditory cortex: a synthesis of human and animal research. Lawrence Erlbaum Associates, Inc., LondonGoogle Scholar
  17. 17.
    Langers DR, Backes WH, van Dijk P (2007) Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage 34(1):264–273PubMedCrossRefGoogle Scholar
  18. 18.
    Lantos G, Liu G, Shafer V, Knuth K, Vaughan H (1997) Tonotopic organization of primary auditory cortex: an fMRI study. Neuroimage 5:S174Google Scholar
  19. 19.
    Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8(5):397–406PubMedCrossRefGoogle Scholar
  20. 20.
    Liegeois-Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory area in man. Brain 114(Pt 1A):139–151PubMedGoogle Scholar
  21. 21.
    Londero A, Langguth B, De Ridder D, Bonfils P, Lefaucheur JP (2006) Repetitive transcranial magnetic stimulation (rTMS): a new therapeutic approach in subjective tinnitus? Clin Neurophysiol 36(3):145–155CrossRefGoogle Scholar
  22. 22.
    Muhlau M, Rauschecker JP, Oestreicher E, Gaser C, Rottinger M, Wohlschlager AM, Simon F, Etgen T, Conrad B, Sander D (2006) Structural brain changes in tinnitus. Cereb Cortex 16(9):1283–1288PubMedCrossRefGoogle Scholar
  23. 23.
    Norena AJ (2011) An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 35(5):1089–1109PubMedCrossRefGoogle Scholar
  24. 24.
    Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex : probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672PubMedCrossRefGoogle Scholar
  25. 25.
    Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13:669–683PubMedCrossRefGoogle Scholar
  26. 26.
    Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ Jr (2006) Surgical anatomy of microneurosurgical sulcal key points. Neurosurgery 59(4 Suppl 2):ONS177–ONS210 discussion ONS210-171PubMedGoogle Scholar
  27. 27.
    Smith JA, Mennemeier M, Bartel T, Chelette KC, Kimbrell T, Triggs W, Dornhoffer JL (2007) Repetitive transcranial magnetic stimulation for tinnitus: a pilot study. Laryngoscope 117(3):529–534PubMedCrossRefGoogle Scholar
  28. 28.
    Steinmetz H, Volkmann J, Jancke L, Freund HJ (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Ann Neurol 29(3):315–319PubMedCrossRefGoogle Scholar
  29. 29.
    Sumanaweera TS, Adler JR Jr, Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 35(4):696–703 discussion 703–694PubMedCrossRefGoogle Scholar
  30. 30.
    Tahmasebi AM, Abolmaesumi P, Wild C, Johnsrude IS (2010) A validation framework for probabilistic maps using Heschl’s gyrus as a model. Neuroimage 50(2):532–544. doi: 10.1016/j.neuroimage.2009.12.074 PubMedCrossRefGoogle Scholar
  31. 31.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  32. 32.
    Whitfield IC (1967) The auditory pathway. Williams and Wilkins Company, BaltimoreGoogle Scholar
  33. 33.
    Witelson SF, Kigar DL (1992) Sylvian fissure morphology and asymmetry in men and women: bilateral differences in relation to handedness in men. J Comp Neurol 323(3):326–340PubMedCrossRefGoogle Scholar
  34. 34.
    Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Emile Simon
    • 1
    • 2
    • 3
    • 4
  • Xavier Perrot
    • 3
    • 4
  • Michel Linne
    • 2
  • Afif Afif
    • 2
  • Guillaume Becq
    • 5
  • Patrick Mertens
    • 1
    • 2
  1. 1.Department of AnatomyClaude Bernard-Lyon1 UniversityLyonFrance
  2. 2.Department of NeurosurgeryHospital P. Wertheimer, Hospices Civils de LyonLyonFrance
  3. 3.Department of AudiologyLyon Sud Hospital, Hospices Civils de LyonLyonFrance
  4. 4.INSERM, U1028; CNRS, UMR5292; University Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition TeamLyonFrance
  5. 5.Laboratory of EpilepsyGrenoble University HospitalGrenobleFrance

Personalised recommendations