Advertisement

Surgical and Radiologic Anatomy

, Volume 34, Issue 8, pp 721–729 | Cite as

Computer-assisted anatomic dissection (CAAD): evolution, methodology and application in intra-pelvic innervation study

  • Bayan Alsaid
  • Thomas Bessede
  • Djibril Diallo
  • Ibrahim Karam
  • Jean François Uhl
  • Vincent Delmas
  • Stéphane Droupy
  • Gérard Benoît
Original Article

Abstract

Objective

Classic anatomical methods have limitations in micro determination of nerve fibre location. Furthermore, the precise detection of the nerve fibres nature is not possible by means of dissection. The combination of immunohistochemistry and three-dimensional reconstruction could be used to resolve these limitations of morphological sciences. Our aim is to describe the evolution of computer-assisted anatomic dissection (CAAD), which is an original method applied to study the distribution of intra-pelvic nerves in anatomic research.

Materials and methods

Serial transverse sectioning of the pelvic region in rabbit, human fetus, infant and adult cadaver was performed. Sections were immuno-histochemically stained and digitized with a high optical resolution scanner. Photoshop 7 software was used in regrouping of the adult cadaver sections then a tri-dimensional reconstruction was achieved using WinSurf software.

Results

The 3D reconstruction of the immuno-histochemically stained histologic sections of the pelvis allowed for precise structural identification of the prostate and its innervations (in fetus, infant and adult). In addition, we reconstructed the entire intra-pelvic organs with accurate demonstration of the location of both adrenergic and cholinergic pathways. Moreover, we performed a virtual dissection of each of the pelvic structures with description of the exact location of the inferior hypogastric plexus, as well as the nature and the distribution of its fibres.

Conclusion

The CAAD is an original method in anatomic research, which illustrates the fact that descriptive anatomy is still a dynamic science. This method allows for a 3D presentation of the intra-organic innervation, the nature of the nerve fibres, and the distribution of receptors and their neurotransmitters. This technique improves the understanding of the complex anatomic regions such as the pelvis from both surgical and educational point of view.

Keywords

Anatomy Computer-assisted anatomic dissection (CAAD) Methodology Pelvic nerves Three-dimensional (3D) reconstruction 

Notes

Conflict of interest

None of the authors has any financial or personal relationship with other people or organisations that might have influenced the present work.

References

  1. 1.
    Alsaid B, Bessede T, Karam I et al (2009) Coexistence of adrenergic and cholinergic nerves in the inferior hypogastric plexus: anatomical and immunohistochemical study with 3D reconstruction in human male fetus. J Anat 214(5):645–654PubMedCrossRefGoogle Scholar
  2. 2.
    Arango-Toro O, Domenech-Mateu JM (1993) Development of the pelvic plexus in human embryos and fetuses and its relationship with the pelvic viscera. Eur J Morphol 31(3):193–208PubMedGoogle Scholar
  3. 3.
    Benoit G, Droupy S, Quillard J et al (1999) Supra and infralevator neurovascular pathways to the penile corpora cavernosa. J Anat 195(4):605–615PubMedCrossRefGoogle Scholar
  4. 4.
    Benoit G, Merlaud L, Meduri G et al (1994) Anatomy of the prostatic nerves. Surg Radiol Anat 16(1):23–29PubMedCrossRefGoogle Scholar
  5. 5.
    Benoit G, Quillard J, Ledroux X et al (1990) Computer-assisted prostate reconstruction. Ann Urol (Paris) 24(7):585–587Google Scholar
  6. 6.
    Born G (1883) Die platten modellir methode. Arch Mikrosk Anat 22:584–599CrossRefGoogle Scholar
  7. 7.
    Brandt SS, Ziese U (2006) Automatic TEM image alignment by trifocal geometry. J Microsc 222(1):1–14PubMedCrossRefGoogle Scholar
  8. 8.
    Bussolati G, Marchio C, Volante M (2005) Tissue arrays as fiducial markers for section alignment in 3-D reconstruction technology. J Cell Mol Med 9(2):438–445PubMedCrossRefGoogle Scholar
  9. 9.
    Colombel M, Droupy S, Paradis V et al (1999) Caverno-pudendal nervous communicating branches in the penile hilum. Surg Radiol Anat 21(4):273–276PubMedCrossRefGoogle Scholar
  10. 10.
    Eihe E, Tao-Cheng JH, Schafer MK et al (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93(8):3547–3552CrossRefGoogle Scholar
  11. 11.
    Flynn AA, Pedley RB, Green AJ et al (2001) Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images. Cancer Biother Radiopharm 16(5):391–400PubMedCrossRefGoogle Scholar
  12. 12.
    Fritsch H (1989) Topography of the pelvic autonomic nerves in human fetuses between 21–29 weeks of gestation. Anat Embryol (Berl) 180(1):57–64CrossRefGoogle Scholar
  13. 13.
    Gibbins IL, Furness JB, Costa M et al (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57(2):125–130PubMedCrossRefGoogle Scholar
  14. 14.
    Hounnou GM, Uhl JF, Plaisant O et al (2003) Morphometry by computerized three-dimensional reconstruction of the hypogastric plexus of a human fetus. Surg Radiol Anat 25(1):21–31PubMedCrossRefGoogle Scholar
  15. 15.
    Karam I, Droupy S, Abd-Alsamad I et al (2005) The precise location and nature of the nerves to the male human urethra: histological and immunohistochemical studies with three-dimensional reconstruction. Eur Urol 48(5):858–864PubMedCrossRefGoogle Scholar
  16. 16.
    Karam I, Droupy S, Abd-Alsamad I et al (2005) Innervation of the female human urethral sphincter: 3D reconstruction of immunohistochemical studies in the fetus. Eur Urol 47(5):627–633PubMedCrossRefGoogle Scholar
  17. 17.
    Kim NK, Aahn TW, Park JK et al (2002) Assessment of sexual and voiding function after total mesorectal excision with pelvic autonomic nerve preservation in males with rectal cancer. Dis Colon Rectum 45(9):1178–1185PubMedCrossRefGoogle Scholar
  18. 18.
    Kinugasa Y, Murakami G, Uchimoto K et al (2006) Operating behind Denonvilliers’ fascia for reliable preservation of urogenital autonomic nerves in total mesorectal excision: a histologic study using cadaveric specimens, including a surgical experiment using fresh cadaveric models. Dis Colon Rectum 49(7):1024–1032PubMedCrossRefGoogle Scholar
  19. 19.
    Kinugasa Y, Murakami G, Suzuki D et al (2007) Histological identification of fascial structures posterolateral to the rectum. Br J Surg 94(5):620–626PubMedCrossRefGoogle Scholar
  20. 20.
    Krantz KE (1959) Innervation of the human uterus. Ann N Y Acad Sci 75:770–784PubMedCrossRefGoogle Scholar
  21. 21.
    Lepor H, Gregerman M, Crosby R et al (1985) Precise localization of the autonomic nerves from the pelvic plexus to the corpora cavernosa: a detailed anatomical study of the adult male pelvis. J Urol 133(2):207–212PubMedGoogle Scholar
  22. 22.
    Lewis DA, Campbell MJ, Foote SL et al (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279–290PubMedGoogle Scholar
  23. 23.
    Lu W, Huang Q, Ku G et al (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9):2617–2626PubMedCrossRefGoogle Scholar
  24. 24.
    Margolis G, Pickett JP (1956) New applications of the Luxol fast blue myelin stain. Lab Invest 5(6):459–474PubMedGoogle Scholar
  25. 25.
    Marks LB, Bentel G, Light K et al (2000) Routine 3D treatment planning: opportunities, challenges, and hazards. Oncology (Williston Park) 14(8):1191–1201Google Scholar
  26. 26.
    Mauroy B, Demondion X, Drizenko A et al (2003) The inferior hypogastric plexus (pelvic plexus): its importance in neural preservation techniques. Surg Radiol Anat 25(1):6–15PubMedCrossRefGoogle Scholar
  27. 27.
    Mutter D, Dallemagne B, Bailey C et al (2009) 3D virtual reality and selective vascular control for laparoscopic left hepatic lobectomy. Surg Endosc 23(2):432–435PubMedCrossRefGoogle Scholar
  28. 28.
    Ozdemir MB, Eskicorapci SY, Baydar DE et al (2007) A cadaveric histological investigation of the prostate with three-dimensional reconstruction for better results in continence and erectile function after radical prostatectomy. Prostate Cancer Prostatic Dis 10(1):77–81PubMedCrossRefGoogle Scholar
  29. 29.
    Pick J (1970) The autonomic nervous system: morphological, comparitive, clinical, and surgical aspects. J.B. LippincottGoogle Scholar
  30. 30.
    Schaefer HJ (1957) A rapid trichrome stain of Masson type. Am J Clin Pathol 28(6):646–647PubMedGoogle Scholar
  31. 31.
    Sievert KD, Hennenlotter J, Laible I et al (2008) The periprostatic autonomic nerves–bundle or layer? Eur Urol 54(5):1109–1116PubMedCrossRefGoogle Scholar
  32. 32.
    Soler L, Delingette H, Malandain G et al (2000) An automatic virtual patient reconstruction from CT-scans for hepatic surgical planning. Stud Health Technol Inform 70:316–322PubMedGoogle Scholar
  33. 33.
    Stanford JL, Feng Z, Hamilton AS et al (2000) Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: the Prostate Cancer Outcomes Study. JAMA 283(3):354–360PubMedCrossRefGoogle Scholar
  34. 34.
    Stefansson K, Wollmann RL, Moore BW (1982) Distribution of S-100 protein outside the central nervous system. Brain Res 234(2):309–317PubMedCrossRefGoogle Scholar
  35. 35.
    Strasser H, Bartsch G (2000) Anatomy and innervation of the rhabdosphincter of the male urethra. Semin Urol Oncol 18(1):2–8PubMedGoogle Scholar
  36. 36.
    Streicher J, Weninger WJ, Muller GB (1997) External marker-based automatic congruencing: a new method of 3D reconstruction from serial sections. Anat Rec 248(4):583–602PubMedCrossRefGoogle Scholar
  37. 37.
    Su LM, Vagvolgyi BP, Agarwal R et al (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4):896–900PubMedCrossRefGoogle Scholar
  38. 38.
    Uhl JF, Park JS, Chung MS et al (2006) Three-dimensional reconstruction of urogenital tract from Visible Korean Human. Anat Rec A Discov Mol Cell Evol Biol 288(8):893–899PubMedGoogle Scholar
  39. 39.
    Uhl JF, Plaisant O, Ami O et al (2006) 3D modeling in the field of morphology: methods, interest and results. Morphologie 90(288):5–20PubMedCrossRefGoogle Scholar
  40. 40.
    Usdin TB, Eiden LE, Bonner TI et al (1995) Molecular biology of the vesicular ACh transporter. Trends Neurosci 18(5):218–224PubMedCrossRefGoogle Scholar
  41. 41.
    Wallner C, Dabhoiwala NF, Deruiter MC et al (2008) The Anatomical Components of Urinary Continence. Eur Urol 54(5):1136–1142PubMedCrossRefGoogle Scholar
  42. 42.
    Walsh PC, Brendler CB, Chang T et al (1990) Preservation of sexual function in men during radical pelvic surgery. Md Med J 39(4):389–393PubMedGoogle Scholar
  43. 43.
    Yucel S, Baskin LS (2003) Identification of communicating branches among the dorsal, perineal and cavernous nerves of the penis. J Urol 170(1):153–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bayan Alsaid
    • 1
    • 2
    • 3
  • Thomas Bessede
    • 2
  • Djibril Diallo
    • 2
  • Ibrahim Karam
    • 2
    • 3
  • Jean François Uhl
    • 3
  • Vincent Delmas
    • 3
  • Stéphane Droupy
    • 2
  • Gérard Benoît
    • 2
  1. 1.Laboratory of Anatomy, Faculty of MedicineUniversity of DamascusDamascusSyria
  2. 2.Laboratory of Experimental Surgery, Cellular Interaction in Uro-Andrology EA 4122, Faculty of MedicineBicêtre-Paris 11 UniversityLe Kremlin-BicêtreFrance
  3. 3.Institute of Anatomy of Saints Pères URDIA, Faculty of MedicineRené Descartes-Paris 5 UniversityParisFrance

Personalised recommendations