Surgical and Radiologic Anatomy

, Volume 31, Issue 7, pp 523–529 | Cite as

Mechanics of crural fascia: from anatomy to constitutive modelling

  • Carla Stecco
  • Piero G. Pavan
  • Andrea Porzionato
  • Veronica Macchi
  • Luca Lancerotto
  • Emanuele L. Carniel
  • Arturo N. Natali
  • Raffaele De CaroEmail author
Original Article


Ten dissections of inferior limbs and histological studies were performed to describe the structural conformation of the muscular fascia of the leg (crural fascia) and to propose a constitutive model to be adopted for the analysis of its biomechanical behaviour. The crural fascia had a mean thickness of 924 μm and was composed of three layers (mean thickness 277.6 μm) of parallel, collagen fibre bundles separated by a thin layer of loose connective tissue (mean thickness 43 μm). Only a few elastic fibres were highlighted. The disposition of the collagen fibres gives the crural fascia anisotropic characteristics. In addition, their crimped conformation is the cause of the non-linear elastic behaviour of the tissue. Both these aspects are included in the constitutive model. The constitutive modelling of the crural fascia represents a useful tool to rationally interpret the correlation between functional behaviour and structural conformation.


Connective tissue Fascia Collagen Biomechanics Structural models 


  1. 1.
    Bermudez K, Knudson MM, Morabito D, Kessel O (1988) Fasciotomy, chronic venous insufficiency, and the calf muscle pump. Arch Surg 133:1356–1361Google Scholar
  2. 2.
    Bogduk N, Macintosh JE (1984) The applied anatomy of the thoracolumbar fascia. Spine 9:164–170PubMedCrossRefGoogle Scholar
  3. 3.
    Fawcett DW (1994) Bloom and Fawcett: a textbook of histology, 12th edn. Chapman & Hall, New YorkGoogle Scholar
  4. 4.
    Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838CrossRefGoogle Scholar
  5. 5.
    Gerlach UJ, Lierse W (1990) Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat 139:11–25PubMedCrossRefGoogle Scholar
  6. 6.
    Geneser F (1986) Textbook of histology. Munksgaard Lea & Febiger, CopenhagenGoogle Scholar
  7. 7.
    Gurtin ME (1981) An introduction to continuum mechanics. Academic, San DiegoGoogle Scholar
  8. 8.
    Hammer WI (2007) Functional soft-tissue examination and treatment by manual methods, 3rd edn. Jones and Bartlett Publishers, SudburyGoogle Scholar
  9. 9.
    Holzapfel GA, Gasser TC (2001) A viscoelastic model for fibre-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403CrossRefGoogle Scholar
  10. 10.
    Langevin HM, Sherman KJ (2007) Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses 68:74–80PubMedCrossRefGoogle Scholar
  11. 11.
    Marsden JE, Hughes TJR (1968) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffsGoogle Scholar
  12. 12.
    Martini FH, Timmons MJ, Tallitsch RB (2003) Human anatomy, 4th edn. Prentice-Hall, New JerseyGoogle Scholar
  13. 13.
    Maurel W, Wu Y, Magnenat Thalmann N, Thalmann D (1997) Biomechanical models for soft tissue simulation. Springer, New YorkGoogle Scholar
  14. 14.
    Myers T (2001) Anatomy trains. Churchill Livingstone, OxfordGoogle Scholar
  15. 15.
    Natali AN, Pavan PG, Carniel EL, Dorow C (2004) Visco-elastic response of the periodontal ligament: an experimental-numerical analysis. Connect Tissue Res 45:222–230PubMedCrossRefGoogle Scholar
  16. 16.
    Natali AN, Pavan PG, Carniel EL, Lucisano ME, Taglialavoro G (2005) Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Med Eng Phys 27:209–214PubMedCrossRefGoogle Scholar
  17. 17.
    Natali AN, Carniel EL, Pavan PG, Sander FG, Dorow C, Geiger M (2008) A constitutive model for the analysis of the biomechanical response of the periodontal ligament. J Biomech Eng-T ASME 130(3):031004CrossRefGoogle Scholar
  18. 18.
    Paoletti S (2002) Les Fascias: Rôle des tissus dans la mécanique humaine. Sully, VannesGoogle Scholar
  19. 19.
    Rolf IP (1997) Rolfing. Mediterranee, RomaGoogle Scholar
  20. 20.
    Singh N, Sidawy AN, Bottoni CR, Antedomenico E, Gawley TS, Harada D, Gillespie DL, Uyehara CF, Cordts PR (2006) Physiological changes in venous hemodynamics associated with elective fasciotomy. Ann Vasc Surg 20:301–305PubMedCrossRefGoogle Scholar
  21. 21.
    Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer, New YorkGoogle Scholar
  22. 22.
    Standring S, Ellis H, Healy J, Johnson D, Williams A (2005) Gray’s anatomy, 39th edn. Churchill Livingstone, LondonGoogle Scholar
  23. 23.
    Stecco C, Porzionato A, Macchi V, Tiengo C, Parenti A, Aldegheri R, Delmas V, De Caro R (2006) Histological characteristics of the deep fascia of the upper limb. Ital J Anat Embryol 111:105–110PubMedGoogle Scholar
  24. 24.
    Stecco C, Gagey O, Macchi V, Porzionato A, De Caro R, Aldegheri R, Delmas V (2007) Tendinous muscular insertions onto the deep fascia of the upper limb First part: anatomical study. Morphologie 91:29–37PubMedGoogle Scholar
  25. 25.
    Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, Aldegheri R, De Caro R, Delmas V (2007) Anatomy of the deep fascia of the upper limb Second part: study of innervation. Morphologie 91:38–43PubMedGoogle Scholar
  26. 26.
    Stecco C, Porzionato A, Macchi V, Stecco A, Vigato E, Parenti A, Delmas V, Aldegheri R, De Caro R (2008) The expansions of the pectoral girdle muscles onto the brachial fascia: morphological aspects and spatial disposition. Cells Tissues Organs 188:320–329PubMedCrossRefGoogle Scholar
  27. 27.
    Stecco L (2004) Fascial manipulation for musculoskeletal pain. Piccin, PadovaGoogle Scholar
  28. 28.
    Tiller WA (1987) What do electrodermal diagnostic acupuncture instruments really measure. Am J Acupunct 15:18–23Google Scholar
  29. 29.
    Vidal BC, Mello ML (2008) Optical anisotropy of collagen fibers of rat calcaneal tendons: an approach to spatially resolved supramolecular organization. Acta Histochem: 07.005Google Scholar
  30. 30.
    Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15:425–429PubMedCrossRefGoogle Scholar
  31. 31.
    Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Carla Stecco
    • 1
  • Piero G. Pavan
    • 2
  • Andrea Porzionato
    • 1
  • Veronica Macchi
    • 1
  • Luca Lancerotto
    • 1
  • Emanuele L. Carniel
    • 2
  • Arturo N. Natali
    • 2
  • Raffaele De Caro
    • 1
    • 3
    Email author
  1. 1.Department of Human Anatomy and PhysiologyUniversity of PadovaPadovaItaly
  2. 2.Centre of Mechanics of Biological MaterialsUniversity of PadovaPadovaItaly
  3. 3.Section of Anatomy, Department of Human Anatomy and PhysiologyUniversity of PadovaPadovaItaly

Personalised recommendations