Advertisement

Surgical and Radiologic Anatomy

, Volume 31, Issue 1, pp 35–42 | Cite as

Pectoral and femoral fasciae: common aspects and regional specializations

  • A. Stecco
  • V. Macchi
  • S. Masiero
  • A. Porzionato
  • C. Tiengo
  • C. Stecco
  • V. Delmas
  • R. De CaroEmail author
Original Article

Abstract

The aim of this study was to analyse the organization of the deep fascia of the pectoral region and of the thigh. Six unembalmed cadavers (four men, two women, age range 48–93 years old) were studied by dissection and by histological (HE, van Gieson and azan-Mallory) and immunohistochemical (anti S-100) stains; morphometric studies were also performed in order to evaluate the thickness of the deep fascia in the different regions. The pectoral fascia is a thin lamina (mean thickness ± SD: 297 ± 37 μm), adherent to the pectoralis major muscle via numerous intramuscular fibrous septa that detach from its inner surface. Many muscular fibres are inserted into both sides of the septa and into the fascia. The histological study demonstrates that the pectoral fascia is formed by a single layer of undulated collagen fibres, intermixed with many elastic fibres. In the thigh, the deep fascia (fascia lata) is independent from the underlying muscle, separated by the epimysium and a layer of loose connective tissue. The fascia lata presents a mean thickness of 944 μm (±102 μm) and it is formed by bundles of collagen fibres, arranged in two to three layers. In each layer, the fibres are parallel to each other, whereas the orientation of the fibres varies from one layer to the adjacent one. The van Gieson elastic fibres stain highlights the presence of elastic fibres only in the more external layer of the fascia lata. In the thigh the epimysium is easily recognizable under the deep fascia and presents a mean thickness of 48 μm. Both the fascia lata and pectoral fascia result innerved, no specific differences in density or type of innervations is highlighted. The deep fascia of the pectoral region is morphologically and functionally different from that of the thigh: the fascia lata is a relatively autonomous structure with respect to the underlying muscular plane, while the pectoralis fascia acts as an additional insertion for the pectoralis major muscle. Different portions of the pectoralis major muscle are activated according to the glenohumeral joint movements and, consequently, selective portions of the pectoral fascia are stretched, activating specific patterns of proprioceptors. So, the pectoralis muscle has to be considered together with its fascia, and so as a myofascial unit, acting as an integrated control motor system.

Keywords

Fascia lata Iliotibial tract Pectoral fascia Myofascial unit Connective tissue 

References

  1. 1.
    Basmajian JW (1989) Grant’s method of anatomy, 11th edn. Williams & Wilkins, Baltimore, pp 359–371Google Scholar
  2. 2.
    Chiarugi G (1975) Istituzioni di Anatomia dell’Uomo, vol 1. Società editrice libraria, Milano, p 146Google Scholar
  3. 3.
    Fairclough J, Hayashi K, Toumi H, Lyons K, Bydder G, Phillips N, Best TM, Benjamin M (2006) The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome. J Anat 208:309–316PubMedCrossRefGoogle Scholar
  4. 4.
    Gerlach UJ, Lierse W (1990) Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat 139:11–25PubMedCrossRefGoogle Scholar
  5. 5.
    Graf RM, Bernardes A, Auersvald A, Damasio RC (2000) Subfascial endoscopica transaxillary augmentation mammaplasty. Aesthetic Plast Surg 24:216–220PubMedCrossRefGoogle Scholar
  6. 6.
    Hwang K, Kim DJ (2005) Anatomy of pectoral fascia in relation to subfascial mammary augmentation. Ann Plast Surg 55:576–579PubMedCrossRefGoogle Scholar
  7. 7.
    Jinde L, Jianlianq S, Xiaopinq C, Xiaoyan T, Jiaqinq L, Qun M, Bo L (2006) Anatomy and clinical significance of pectoral fascia. Plast Reconstr Surg 118:1557–1560PubMedCrossRefGoogle Scholar
  8. 8.
    Kent GC (1978) Comparative anatomy of the vertebrates. Mosby Co., Saint LouisGoogle Scholar
  9. 9.
    Langevin HM (2006) Connective tissue: a body-wide signalling network? Med Hypotheses 66:1074–1077PubMedCrossRefGoogle Scholar
  10. 10.
    Langevin HM, Sherman KJ (2007) Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses 68:74–80PubMedCrossRefGoogle Scholar
  11. 11.
    Maas H, Meijer JM, Huijing PA (2005) Intermuscular interactions between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. Cells Tissues Organs 181:38–50PubMedCrossRefGoogle Scholar
  12. 12.
    Meijer HJ, Baan GC, Huijing PA (2006) Myofascial force transmission is increasingly important at lower forces: firing frequency related length-force characteristics of rat extensor digitorum longus. Acta Physiol 186:185–195CrossRefGoogle Scholar
  13. 13.
    Myers TW (2001) Anatomy trains. Churchill Livingstone, Oxford, pp 171–194Google Scholar
  14. 14.
    Paoletti S (2002) Les Fascias. Rôle des tissus dans la mécanique humaine. Sully, Vannes, pp 193–199Google Scholar
  15. 15.
    Rijkelijkhuizen JM, Meijer HJM, Baan GC, Huijing PA (2007) Myofascial force transmission also occurs beween antagonistic muscles located within opposite compartments of the rat lower hind limb. J Electromyogr Kines 17:690–697CrossRefGoogle Scholar
  16. 16.
    Sato T, Hashimoto M (1984) Morphological analysis of the fascial lamination of the trunk. Bull Tokyo Med Dent Univ 31:21–32PubMedGoogle Scholar
  17. 17.
    Standring S, Ellis H, Healy J, Johnson D, Williams A (2005) Gray’s anatomy, 39th edn. Churchill Livingstone, London, pp 817–852Google Scholar
  18. 18.
    Staubersand J, Li Y (1996) Zum Feinbau der Fascia cruris mit besonderer intrafaszialer nerven. Manuelle Medizin, vol 34. Springer, Heidelberg, pp 196–200Google Scholar
  19. 19.
    Stecco C, Porzionato A, Macchi V, Tiengo C, Parenti A, Aldegheri R, Delmas V, De Caro R (2006) Histological characteristics of the deep fascia of the upper limb. Ital J Anat Embryol 111:105–110PubMedGoogle Scholar
  20. 20.
    Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, Aldegheri R, De Caro R, Delmas V (2007) Anatomy of the deep fascia of the upper limb second part: study of innervation. Morphologie 91:38–43PubMedGoogle Scholar
  21. 21.
    Stecco C, Porzionato A, Macchi V, Parenti A, Aldegheri R, Delmas V, De Caro R (2008) The expansions of the pectoral girdle muscles onto the brachial fascia: morphological aspects and spatial disposition. Cell Tissues Organ 19 (Epub ahead of print)Google Scholar
  22. 22.
    Stecco L (1996) La Manipolazione Neuroconnettivale. Marrapese, Roma, pp 45–62Google Scholar
  23. 23.
    Stecco L (2004) Fascial manipulation for musculoskeletal pain. Piccin, Padova, pp 123–130Google Scholar
  24. 24.
    Stecco L, Stecco C (2007) Manipolazione fasciale. Parte pratica. Piccin, Padova, pp 3–29Google Scholar
  25. 25.
    Stefanelli A (1968) Anatomia comparata: morfologia dei vertebrati. Ed. dell’Ateneo, RomaGoogle Scholar
  26. 26.
    Stilwell D (1957) Regional variations in the innervation of deep fasciae and aponeuroses. Anat Rec 23:94–104Google Scholar
  27. 27.
    Tebbetts JB (2004) Does fascia provide additional, meaningful coverage over a breast implant? Plast Reconstr Surg 113:777–779PubMedCrossRefGoogle Scholar
  28. 28.
    Testut JL, Jacob O (1905) Précis d’anatomie topographique avec applications medico-chirurgicales, vol III. Gaston Doin et Cie, Paris, p 302Google Scholar
  29. 29.
    Vleeming A, Stoeckart R, Snijders CJ (1995) The posterior layer of the thoracolumbar fascia. Spine 20:753–758PubMedCrossRefGoogle Scholar
  30. 30.
    Yahia H, Rhalmi S, Newman N (1992) Sensory innervation of human thoracolumbar fascia, an immunohistochemical study. Acta Orthop Scand 63:195–197PubMedCrossRefGoogle Scholar
  31. 31.
    Yucesoy CA, Maas H, Koopman B, Grootenboer HJ, Huijing PA (2006) Mechanisms causing effects of muscle position on proximo-distal muscle force differences in extra-muscular myofascial force transmission. Med Eng Phys 28:214–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Stecco
    • 1
  • V. Macchi
    • 2
  • S. Masiero
    • 1
  • A. Porzionato
    • 2
  • C. Tiengo
    • 2
  • C. Stecco
    • 2
  • V. Delmas
    • 3
  • R. De Caro
    • 2
    Email author
  1. 1.Physical Medicine and RehabilitationUniversity of PadovaPadovaItaly
  2. 2.Section of Anatomy, Department of Human Anatomy and PhysiologyUniversity of PadovaPadovaItaly
  3. 3.Department of AnatomyUniversité Paris DescartesParisFrance

Personalised recommendations