Skip to main content

Advertisement

Log in

Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode

  • Radiology
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the optimal tube current setting and scanning mode for hominid fossil skull scanning, using multi-detector row computed tomography (CT). Four fossil skulls (La Ferrassie 1, Abri Pataud 1, CroMagnon 2 and Cro-Magnon 3) were examined by using the CT scanner LightSpeed 16 (General Electric Medical Systems) with varying dose per section (160, 250, and 300 mAs) and scanning mode (helical and conventional). Image quality of two-dimensional (2D) multiplanar reconstructions, three-dimensional (3D) reconstructions and native images was assessed by four reviewers using a four-point grading scale. An ANOVA (analysis of variance) model was used to compare the mean score for each sequence and the overall mean score according to the levels of the scanning parameters. Compared with helical CT (mean score=12.03), the conventional technique showed sustained poor image quality (mean score=4.17). With the helical mode, we observed a better image quality at 300 mAs than at 160 in the 3D sequences (P=0.03). Whereas in native images, a reduction in the effective tube current induced no degradation in image quality (P=0.05). Our study suggests a standardized protocol for fossil scanning with a 16×0.625 detector configuration, a 10 mm beam collimation, a 0.562:1 acquisition mode, a 0.625/0.4 mm slice thickness/reconstruction interval, a pitch of 5.62, 120 kV and 300 mAs especially when a 3D study is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balzeau A, Jacob T, Indriati E (2002) Structures crâniennes internes de l’ Homo erectus Sambungmacan 1 (Java Indonesie). C R Palevol 305–310

  2. Bookstein FL, Chernoff B, Elder RL, Humphries JM, Smith GR, Strauss RE (1985) Morphometrics in evolutionary biology. The Academy of Natural Sciences of Philadelphia (Special Publication), Philadelphia, p 15

  3. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Brauer G, Groden C, Groning F, Kroll A, Kupczik K, Mbua E, Pommert A, Schiemann T (2004) Virtual study of the endocranial morphology of the matrix-filled cranium from Eliye, Springs, Kenya. Anat Rec 276A:113–133

    Article  Google Scholar 

  5. Capitan L, Peyrony D (1909) Deux squelettes humains au milieu de foyers de l’époque moustèrienne. In: C R Acad Inscrip. Belles-lettres, Paris, pp 797–806

    Google Scholar 

  6. Conroy GC, Vannier MW (1984) Non-invasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography. Nature 226:456–458

    CAS  Google Scholar 

  7. Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26:5–18

    Article  PubMed  MATH  CAS  Google Scholar 

  8. Hublin J-J, Spoor F, Braun M, Zonneveld F, Condemi S (1996) A late Neandertal from Arcy-sur-Cure associated with Upper Palaeolithic artifacts. Nature 381:224–226

    PubMed  CAS  ADS  Google Scholar 

  9. Kasales CJ, Hopper KD, Ariola DN, TenHave TR, Meilstrup JW, Mahraj RP, Van Hook D, Westacott S, Sefczek RJ, Barr JD (1995) Reconstructed helical CT scans: improvement in z-axis resolution compared with overlapped and nonoverlapped conventional CT scans. AJR 164:1281–1284

    PubMed  CAS  Google Scholar 

  10. Lartet L (1868) Une sépulture des Troglodytes du Périgord (crânes des Eyzies). Bull Soc Anthropol Paris 3:335–349

    Article  Google Scholar 

  11. Movius H, Vallois H (1959) Crâne Proto-Magdalénien et Vénus du Périgordien final trouvés dans l’Abri-Pataud. L’Anthropologie 63:213–232

    Google Scholar 

  12. Murphy WA Jr, Zur Nedden D, Gostner P, Knapp R, Recheis W, Seidler H (2003) The iceman: discovery and imaging. Radiology 226:614–29

    PubMed  Google Scholar 

  13. Ney DR, Fishman EK, Magid D, Robertson DD, Kawashima A (1991) Three-dimensional volumetric display of CT data: effect of scan parameters upon image quality. J Comput Assist Tomogr 15:875–885

    PubMed  CAS  Google Scholar 

  14. Ponce de Leün MS, Zollikofer CP (1999) New evidence from Le Moustier 1: computerassisted reconstruction and morphometry of the skull. Anat Rec 254:474–489

    Article  PubMed  Google Scholar 

  15. Prossinger H, Seidler H, Wicke L, Weaver D, Recheis W, Stringer C, Muller GB (2003) Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anat Rec (New Anat) 273:132–142

    Article  Google Scholar 

  16. Ross CF, Henneberg M (1995) Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil hominids. Am J Phys Anthropol 98:575–593

    PubMed  CAS  Google Scholar 

  17. Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ Jr, Aisen AM, Persohn SA, Kopecky KK (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    PubMed  CAS  Google Scholar 

  18. Schwartz GT, Conroy GC (1996) Cross-sectional geometric properties of the Otavipithecus mandible. Am J Phys Anthropol 99:613–623

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz GT, Thackeray JF, Reid C, Van Reenan JF (1998) Enamel thickness and the topography of the enameldentine junction in South African Plio-Pleistocene hominids with special reference to the Carabelli trait. J Hum Evol 35:523–542

    Article  PubMed  CAS  Google Scholar 

  20. Schwartz JH, Tattersall I (2002) Terminology and craniodental morphology of Genus Homo. In: The human fossil record, vol 1. Wiley, New York

    Google Scholar 

  21. Sokal RR, Rohlf FJ (1995) Biometry. Freeman WH, New York

    Google Scholar 

  22. Spoor F, Jeffery N, Zonneveld F. (2000) Imaging skeletal growth and evolution. In: O’Higgins P, Cohn M (eds) Development, growth and evolution implications for the study of the hominid skeleton. Academic, London

    Google Scholar 

  23. Spoor F, O’Higgins P, Dean C, Lieberman DE (1999) Anterior sphenoid in modern humans. Nature 397:572

    Article  PubMed  CAS  ADS  Google Scholar 

  24. Spoor F, Wood B, Zonneveld F (1994) Implications of early hominid labyrinthine morphology for the evolution of human bipedal locomotion. Nature 369:645–648

    Article  PubMed  CAS  ADS  Google Scholar 

  25. Spoor F, Zonneveld F (1998) A comparative review of the human bony labyrinth. Yearb Phys Anthropol 41: 211–251

    Article  Google Scholar 

  26. Spoor F, Zonneveld F (1999) Computed Tomography-based three-dimensional imaging of hominid fossils: features of the Broken Hill 1 Wadjak 1 and SK 47 crania. In: Koppe T, Nagai H, Alt KW (eds) The paranasal sinuses of higher primates development, function, and evolution. Quintessence Publishing Co Inc, Chicago, pp 207–226

    Google Scholar 

  27. Thompson JL, Illerhaus B (1998) A new reconstruction of the Le Moustier 1 skull and investigation of internal structures using CT data. J Hum Evol 35:647–665

    Article  PubMed  CAS  Google Scholar 

  28. Weber GW (2001) Virtual anthropology (VA): a call for glasnost in paleoanthropology. Anat Rec (New Anat) 265:193–201

    Article  CAS  Google Scholar 

  29. Zollikofer CPE, Ponce de León MS, Martin RD, Stucki P (1995) Neanderthal computer skulls. Nature 375:283–285

    Article  CAS  ADS  PubMed  Google Scholar 

  30. Zonneveld FW, Wind J (1985) High-resolution computed tomography of fossil hominid skulls a new method and some results. In: Tobias PV (ed) Hominid evolution past present and future. Alan Liss, New York, pp 427–436

    Google Scholar 

  31. Zur Nedden D, Knapp R, Wicke K, Judmaier W, Murphy WA Jr, Seidler H, Platzer W (1994) Skull of a 5300-year-old mummy, reproduction and investigation with CT-guided stereolithography. Radiology 193:269–72

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Philippe Mennecier for his permission to scan the fossil skulls, Dr. Robert Cavezian and Dr. Luc Bellinger for their participation in the data analysis, Mr. Frank Morice for his assistance in the scanning, and General Electric Medical Systems for all technical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Badawi-Fayad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badawi-Fayad, J., Yazbeck, C., Balzeau, A. et al. Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode. Surg Radiol Anat 27, 536–543 (2005). https://doi.org/10.1007/s00276-005-0041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-005-0041-4

Keywords

Navigation