Surgical and Radiologic Anatomy

, Volume 27, Issue 5, pp 431–443 | Cite as

The human cerebral cortex on MRI: value of the coronal plane

  • N. Salamon
  • N. Sicotte
  • P. Mongkolwat
  • D. Shattuck
  • G. Salamon


The evaluation of different cortical areas of the cerebral cortex has been analyzed using MRI of 50 normal subjects without any neurological symptoms. This analysis has been made with different spin echo and gradient echo in T1 or T2 in three different planes: horizontal, sagittal and coronal. The most accurate plane to define important cortical areas such as Broca area, Wernicke area, temporal cortex at the level of the superior temporal sulcus, angular gyrus, supra marginal gyrus, hippocampal and parahippocampal cortices as well as that of the parieto or temporo –occipital areas is the coronal plane. Evidently it must be correlated with the other orthogonal planes. To be compared with the main Atlas of Neuroanatomy these sections must be perpendicular or parallel to the plane passing through the anterior and posterior commissures. MRI of patients with neurological disorders must have, as a routine, a series of MR sections performed in the coronal plane, as well as in horizontal and sagittal ones. The coronal plane is certainly the most precise to evaluate these areas involved in language, memory, visuo spatial or behavioral functions. It must be always compared with the rest of the neuroradiological examination and correlated with the clinical neurological signs.


Brain MR Imaging Cerebral cortex 3D imaging Neuropsychology Stereotactic planes 



All brain specimens with the exception of images from the Yakovlev-Hallem collection have been prepared in the Laboratory of Neuroradiology (G.Salamon) from the former INSERM Unit 6 Marseille (Directors H. Gastaut and P.Dell). M.Morel in this Institute has made all photographs of these specimens. The authors would like to thank The Curator of the Yakovlev – Hallem collection of the Armed Forces Institute of Pathology (AFIP) where they could study different documents related to this work The NIH Roadmap supported this work Initiative for Bioinformatics and Computational Biology U54 RR021813 funded by the NCRR, NCBC, and NIGMS.


  1. 1.
    Amunts K, Schlaug G, Schleicher A et al (1996) Assymetry in the human motor cortex and handedness. Neuroimage 4(3 Pt 1):216–222CrossRefPubMedGoogle Scholar
  2. 2.
    Baulac M, De Grissac N, Hasboun D et al (1998) Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol 44(2):223–233CrossRefPubMedGoogle Scholar
  3. 3.
    Braun M, Anxionnat R, Marchal C et al (2000) Radioanatomy of the cerebral cortex. Practical guide of identification. J Radiol 81(suppl 6):704–716PubMedGoogle Scholar
  4. 4.
    Damasio H (1995) Human brain anatomy in computerized images, Chap 5, 6, vol 1. Oxford University Press, Oxford, pp 69–275Google Scholar
  5. 5.
    DeArmond SJ, Fusco MM, Dewey MM (1989) Structure of the human brain. A photographic atlas, vol 1, 3th edn. Oxford University press, New York, pp 37–61Google Scholar
  6. 6.
    Dejerine J (1895, reed. 1980) Anatomie des Centres Nerveux. In: Masson (ed) Paris 2 vol. vol 1, pp 434–485Google Scholar
  7. 7.
    Duvernoy H (1988) The Human hippocampus. An atlas of applied anatomy, vol 1. Bergmann Verlag, Munchen, pp 61–95Google Scholar
  8. 8.
    Duvernoy H (1999) The human brain. Surface, blood supply, and three dimensional sectional anatomy, vol 1, 2nd edn. Springer, Wien, pp 54–213Google Scholar
  9. 9.
    Ebeling U, Steinmetz H (1995) Anatomy of the parietal lobe: mapping the individual pattern. Acta Chir (Wien) 136(1–2):8–11CrossRefGoogle Scholar
  10. 10.
    Ebeling U, Steinmetz H, Huang Y et al (1989) Topography and identification of the inferior precentral sulcus in MR imaging. AJNR Am J Neuroradiol 10(5):937–942PubMedGoogle Scholar
  11. 11.
    Friston KJ (1995) Voxel based morphometry. The methods. Neuroimage 2:89–101CrossRefPubMedGoogle Scholar
  12. 12.
    Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage Jul 10(1):63–83CrossRefGoogle Scholar
  13. 13.
    Haymann LA, Hinck VC (1992) Clinical brain imaging. Normal structure and functional anatomy. Mosby Year Book, St Louis, pp 53–116Google Scholar
  14. 14.
    Houde O, Mazoyer B, Tzourio-Mazoyer N (2002) Cerveau et Psychologie, vol 1. Presses Universitaires de France, Paris, pp 57–124Google Scholar
  15. 15.
    Labar KS, Gitelman DR, Parrish TB, Mesulam M (1999) Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage 10(6):695–704CrossRefPubMedGoogle Scholar
  16. 16.
    Lahlaidi A, Jiddane M (1996) Correlations anatomo-fonctionelles et imagerie de l‘encephale, vol 1. Livres Ibn Sina Rabat, Maroc, pp 227–277Google Scholar
  17. 17.
    Mazoyer B, Tzourio N, Frak V et al (1993) The cortical representation of speech. J Cogn Neurosci 5(4):467–479CrossRefGoogle Scholar
  18. 18.
    Mazziotta JC, Toga AW, Frackowiak RSJ (2000) Brain mapping. The disorders 2000, vol 1. Academic, San Diego, pp 131–180Google Scholar
  19. 19.
    Mega MS (2001) The entorhinal cortex in Alzheimer’s disease. J Neurol Neurosurg Psychiatr 204(4):267–282Google Scholar
  20. 20.
    Mesulam MM (2000) Principles of behavioral and cognitive neurology, vol 1, 2nd edn. Oxford university press, Oxford, pp 1–120Google Scholar
  21. 21.
    Naidich TP, Valavanis AG, Kubik S (1995) Anatomic relationships along the low-middle convexity: part 1. Normal specimens and magnetic resonance imaging. Neurosurgery 36(3):517–532PubMedCrossRefGoogle Scholar
  22. 22.
    Nieuwenhuys R, Voogd J, Van Huijzen Chr (1988) The human central nervous system. A synopsis and Atlas, vol 1, 3rd edn. Springer, Berlin Heidelberg New York, pp 66–78Google Scholar
  23. 23.
    Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci, vol 1. G.Thieme verlag, Stuttgart, pp 10–16Google Scholar
  24. 24.
    Rademacher J, Morosan P, Schormann T et al (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13(4):669–683CrossRefPubMedGoogle Scholar
  25. 25.
    Salamon G, Peretti-Viton P, Faure J et al (1992) Imagerie de l’oeil de l’oreille et du cerveau, vol 1. Springer, Paris, pp 87–179Google Scholar
  26. 26.
    Salamon G, Huang YP (1976) Radiologic anatomy of the brain, vol 1. Springer, Berlin Heidelberg New York, pp 68–97Google Scholar
  27. 27.
    Salamon G, Salamon-Murayama N, Mongkolwat P, Russell E (2003) MRI of the parietal lobe. Anatomic and radiologic correlations. In: Siegel A, Andersen RA, Freund HJ, Spencer D (eds) The Parietal lobe, Advances in Neurology, vol 1. Lippincott Williams and Wilkins, Philadelphia, pp 23–42Google Scholar
  28. 28.
    Schaltenbrand G, Bailey P (1959) Introduction to stereotaxis with an Atlas of Human Brain. Thieme, Stuttgart, vol 3. (vol.2 plates 1 to 13)Google Scholar
  29. 29.
    Singer M, Yakovlev PI (1954) The human brain in sagittal section, vol 1. Charles Thomas, SpringfieldGoogle Scholar
  30. 30.
    Steinmetz H (1996) Structure, functional and cerebral asymmetry: in vivo morphometry of the planum temporale. Neurosci Behav Rev Winter 20(4):587–591Google Scholar
  31. 31.
    Talairach J, David M, Tournoux P (1958) L’exploration chirurgicale stereotaxique du lobe temporal dans l’epilepsie temporale, vol 1. Masson, ParisGoogle Scholar
  32. 32.
    Talairach J, Szikla G (1967) with Tournoux P, Prossalentis A, Bordas-Ferrer M, et al Atlas d’Anatomie streotaxique du telencephale. Etudes anatomo radiologiques, vol 1. Masson, Paris, pp 94–118Google Scholar
  33. 33.
    Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. 3-dimensionnal proportional system: an approach to cerebral imaging, vol 1. Thieme, Stuttgart, pp 61–80Google Scholar
  34. 34.
    Tamraz JC, Comair YG (2000) Atlas of regional anatomy of the brain using MRI with functional correlations, vol 1. Springer, Berlin Heidelberg New York, pp 11–50Google Scholar
  35. 35.
    Thompson PM, Woods PP, Mega MS, Toga AW (2000) Mathematical computational challenges in creating deformable and probabilistic atlases of the human brain. Human Brain Mapp 9(2):81–92CrossRefGoogle Scholar
  36. 36.
    Thompson PM, Mega MS, Woods PP et al (2001) Cortical change in Alzheimer disease detected with a disease specific population-based brain. Cereb Cortex 11:1–16CrossRefPubMedGoogle Scholar
  37. 37.
    Shattuck DW, Leahy RM (2002) BrainSuite: An Automated Cortical Surface Identification Tool. Med Image Anal 6(2):129–142CrossRefPubMedGoogle Scholar
  38. 38.
    Toga AW, Mazziotta JC (2000) Brain mapping. The systems, vol 1. Academic, San Diego, pp 3–32Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • N. Salamon
    • 1
  • N. Sicotte
    • 2
  • P. Mongkolwat
    • 3
  • D. Shattuck
    • 2
  • G. Salamon
    • 1
  1. 1.The David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of Neurology, Brain mapping center, The David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  3. 3.IIS, Department of RadiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations