Irrigation Science

, Volume 35, Issue 6, pp 515–531 | Cite as

A modified particle tracking velocimetry technique to characterize sprinkler irrigation drops

  • J. R. Félix-Félix
  • H. Salinas-Tapia
  • C. Bautista-Capetillo
  • J. García-Aragón
  • J. Burguete
  • E. Playán
Original Paper


Numerous methodologies have been developed to characterize sprinkler irrigation drops with the purpose of improving irrigation efficiency and controlling soil erosion and compaction. This paper presents the laboratory characterization of the morphology and velocity of drops in their free-falling trajectory as influenced by drop diameter and wind speed. For this purpose, a particle tracking velocimetry technique with in-line volumetric illumination was implemented. Hypodermic needles were used to produce droplets of uniform size. Two needle diameters resulted in drops with average diameters of 1.94 and 2.94 mm. Drops were illuminated with a double-pulsed laser beam or an LED lamp. Drop characterization reached an elevation of 4.28 m and occasionally attained terminal velocity. Motion blur was suppressed using a deconvolution filter. Drop equivalent diameter, velocity, chord ratio, canting angle and trajectory angle were determined using an ad-hoc software. The experimental approach led to the measurement of real drop size by illuminating a volume in the capture zone; drop shape ranged from quasi-sphere to ellipsoid. Drop deformation was more intense under high wind speeds. Ballistic simulations of drop fall were performed using sphere and ellipsoid drag force models. Both models resulted in excellent agreement with measured drop velocity, with the ellipsoid model performing marginally better. The robustness of the experimental equipment, particularly in combination with the developed LED lamp, announces future outdoor applications in real sprinkler irrigated fields. Such applications will provide insight on the governing processes, and data sets for the improvement of sprinkler simulation models.



Thanks are due to the Centro Interamericano de Recursos del Agua from the Universidad Autónoma del Estado de México, to the Universidad Autónoma de Zacatecas and to Aula Dei from the Consejo Superior de Investigaciones Científicas for the collaboration and support provided for the publication of this paper. Thanks are also due to CONACYT for providing a scholarship to Jesús Ramiro Félix-Félix to pursue doctoral studies.


  1. Abudi I, Carmi G, Berliner P (2012) Rainfall simulator for field runoff studies. J Hydrol 454:76–81CrossRefGoogle Scholar
  2. Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304CrossRefGoogle Scholar
  3. Arnaez J, Lasanta T, Ruiz P, Ortigosa L (2007) Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res 93:324–334CrossRefGoogle Scholar
  4. Basahi JM, Fipps G, McFarland MJ (1998) Measuring droplet impact energy with piezoelectric film. J Irrig Drain Eng ASCE 124(4):213–217CrossRefGoogle Scholar
  5. Bautista-Capetillo C, Salvador R, Burguete J, Montero J, Tarjuelo J, Zapata N, González J, Playán E (2009) Comparing methodologies for the characterization of water drops emitted by an irrigation sprinkler. Trans ASABE 52(5):1493–1504CrossRefGoogle Scholar
  6. Bautista-Capetillo C, Zavala M, Playán E (2012) Kinetic energy in sprinkler irrigation: different sources of drop diameter and velocity. Irrig Sci 30(1):29–41CrossRefGoogle Scholar
  7. Bautista-Capetillo C, Robles O, Salinas H, Playán E (2014) A particle tracking velocimetry technique for drop characterization in agricultural sprinklers. Irrig Sci 32(6):437–447CrossRefGoogle Scholar
  8. Beard KV, Bringi VN, Thurai M (2010) A new understanding of raindrop shape. Atmos Res 97(4):396–415CrossRefGoogle Scholar
  9. Biggs DS, Andrews M (1997) Acceleration of iterative image restoration algorithms. Appl Optics 36(8):1766–1775CrossRefGoogle Scholar
  10. Blanquies J, Scharff M, Hallock B (2003) The design and construction of a rainfall simulator. International Erosion Control Association (IECA). In: Proceedings of 34th Annual Conference and Expo, Las Vegas, USA, p 10Google Scholar
  11. Burguete J, Playán E, Montero J, Zapata N (2007) Improving drop size and velocity estimates of an optical disdrometer: implications for sprinkler irrigation simulation. Trans ASABE 50(6):2103–2116CrossRefGoogle Scholar
  12. Carrión P, Tarjuelo JM, Montero J (2001) SIRIAS: a simulation model for sprinkler irrigation. I description of model. Irrig Sci 20(2):73–84CrossRefGoogle Scholar
  13. Choo Y, Kang B (2004) Extraction of sizes and velocities of spray droplets by optical imaging method. KSME Int J 18(7):1236–1245CrossRefGoogle Scholar
  14. Chowdhury MN, Testik FY, Hornack MC, Khan AA (2016) Free fall of water drops in laboratory rainfall simulations. Atmos Res 168:158–168CrossRefGoogle Scholar
  15. Cruvinel PE, Vieira SR, Crestana S, Minatel ER, Mucheroni ML, Neto AT (1999) Image processing in automated measurements of raindrop size and distribution. Comput Electron Agric 23:205–217CrossRefGoogle Scholar
  16. Dechmi F, Playán E, Cavero J, Martínez-Cob A, Faci JM (2004) A coupled crop and solid set sprinkler simulation model: I. Model development. J Irrig Drain Eng ASCE 130(6):499–510CrossRefGoogle Scholar
  17. Eigel JD, Moore ID (1983) A simplified technique for measuring raindrop size and distribution. Trans ASAE 26(4):1079–1084CrossRefGoogle Scholar
  18. Fukui Y, Nakanishi K, Okamura S (1980) Computer evaluation of sprinkler irrigation uniformity. Irrig Sci 2:23–32CrossRefGoogle Scholar
  19. Ge M, Wu P, Zhu D, Ames DP (2016) Comparison between sprinkler irrigation and natural rainfall based on droplet diameter. Span J Agric Res 14(1):1201CrossRefGoogle Scholar
  20. Hauser D, Amayenc P, Nutten B, Waldteufel P (1984) A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. J Atmos Ocean Tech 1:256–269CrossRefGoogle Scholar
  21. Huang GJ, Bringi VN, Thurai M (2008) Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J Atmos Ocean Tech 25(9):1717–1723CrossRefGoogle Scholar
  22. Jensen KD (2004) Flow measurements. J Braz Soc Mech Sci 26:400–419Google Scholar
  23. Kathiravelu G, Lucke T, Nichols P (2016) Rain drop measurement techniques: a review. Water 8(1):1–29Google Scholar
  24. Keller J, Bliesner RD (1990) Sprinkle and trickle irrigation. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  25. Kincaid DC (1996) Spraydrop kinetic energy from irrigation sprinklers. Trans ASAE 39(3):847–853CrossRefGoogle Scholar
  26. King BA, Bjorneberg DL (2012) Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers. Trans ASABE 55(2):505–512CrossRefGoogle Scholar
  27. King BA, Winward TW, Bjorneberg DL (2010) Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers. Appl Eng Agric 26(2):263–271CrossRefGoogle Scholar
  28. Kohl RA (1974) Drop size distribution from medium-sized agricultural sprinklers. Trans ASAE 17(4):690–693CrossRefGoogle Scholar
  29. Laws JO, Parsons DA (1943) The relation of raindrop-size to intensity. Eos Trans Am Geophys Union 24(2):452–460CrossRefGoogle Scholar
  30. Li J, Kawano H (1995) Simulating water-drop movement from noncircular sprinkler nozzles. J Irrig Drain Div ASCE 121:152–158CrossRefGoogle Scholar
  31. Li J, Kawano H, Yu K (1994) Droplet size distributions from different shaped sprinkler nozzles. Trans ASAE 37(6):1871–1878CrossRefGoogle Scholar
  32. Li Y, Bai G, Yan H (2015) Development and validation of a modified model to simulate the sprinkler water distribution. Comput Electron Agric 111:38–47CrossRefGoogle Scholar
  33. Liu XC, Gao TC, Liu L (2014) A video precipitation sensor for imaging and velocimetry of hydrometeors. Atmos Meas Tech 7(7):2037–2046CrossRefGoogle Scholar
  34. Lowe EJ (1892) Rain drops. Q J R Meteorol Soc 18(84):242–245CrossRefGoogle Scholar
  35. Lucy LB (1974) An iterative technique for the rectification of observed distributions. Astron J 79(6):745–754CrossRefGoogle Scholar
  36. Magarvey RH (1956) Stain method of drop size determination. J Meteorol 14:182–184CrossRefGoogle Scholar
  37. Montero J, Tarjuelo JM, Carrión P (2003) Sprinkler droplet size distribution measured with an optical spectropluviometer. Irrig Sci 22:47–56CrossRefGoogle Scholar
  38. Müller S, Szakáll M, Mitra SK, Diehl K, Borrmann S (2013) Shapes and oscillations of raindrops with reduced surface tensions: measurements at the Mainz vertical wind tunnel. Atmos Res 119:38–45CrossRefGoogle Scholar
  39. Okamura S (1968) Theoretical study on sprinkler sprays. Trans JSIDRE 26:49–55Google Scholar
  40. Paniagua P (2015) Mejora del riego por aspersión en parcela: Caracterización de aspersores a baja presión, estudio de diferentes sistemas de medición de gotas y análisis del modelo balístico. Dissertation, CSIC—Universidad de ZaragozaGoogle Scholar
  41. Peña PE (2007) Tecnificación del riego presurizado. Manual para Diseño de Zonas de Riego Pequeñas. IMTA, México, pp 1–89Google Scholar
  42. Playán E, Zapata N, Faci JM, Tolosa D, Lacueva JL, Pelegrín J, Lafita A (2006) Assessing sprinkler irrigation uniformity using a ballistic simulation model. Agric Water Manag 84(1):89–100CrossRefGoogle Scholar
  43. Salinas-Tapia H (2007) Determinación de parámetros para flujo bi-fásico (sólido–líquido) por medio de técnicas ópticas. Dissertation, Universidad Autónoma del Estado de MéxicoGoogle Scholar
  44. Salinas-Tapia H, García AJ, Moreno HD, Barrientos GB (2006) Particle tracking velocimetry (PTV) algorithm for non-uniform and non-spherical particles. In: Proceedings, electronics, robotics and automotive mechanics conference, CERMA 2:322–327Google Scholar
  45. Salinas-Tapia H, Robles-Rovelo CO, Chávez-Carlos D, Bautista-Capetillo CF (2014) Caracterización geométrica y cinemática de un chorro pulverizado empleando la técnica óptica PTV. Tecnol y Ciencias Del Agua 5(3):125–140Google Scholar
  46. Salvador R, Bautista-Capetillo C, Burguete J, Zapata N, Playán E (2009) A photographic methodology for drop characterization in agricultural sprinklers. Irrig Sci 27(4):307–317CrossRefGoogle Scholar
  47. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):73CrossRefGoogle Scholar
  48. Smits AJ, Lim TT (2000) Flow visualization: techniques and examples. Imperial College Press, LondonCrossRefGoogle Scholar
  49. Sudheer KP, Panda RK (2000) Digital image processing for determining drop sizes from irrigation spray nozzles. Agric Water Manag 45:159–167CrossRefGoogle Scholar
  50. Thompson AL, James LG (1985) Water droplet impact and its effect on infiltration. Trans ASABE 28(5):1506–1510CrossRefGoogle Scholar
  51. Van Dyke M (1982) An album of fluid motion. Parabolic Press, StanfordGoogle Scholar
  52. Vories ED, von Bernuth RD, Mickelson RH (1987) Simulating sprinkler performance in wind. J Irrig Drain Div ASCE 113(1):119–130CrossRefGoogle Scholar
  53. Wu D, Guillemin D, Marshall AW (2007) A modeling basis for predicting the initial sprinkler spray. Fire Saf J 42(4):283–294CrossRefGoogle Scholar
  54. Zhang WH, Jiang X, Liu YM (2012) A method for recognizing overlapping elliptical bubbles in bubble image. Pattern Recogn Lett 33(12):1543–1548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • J. R. Félix-Félix
    • 1
  • H. Salinas-Tapia
    • 1
  • C. Bautista-Capetillo
    • 2
  • J. García-Aragón
    • 1
  • J. Burguete
    • 3
  • E. Playán
    • 3
  1. 1.Centro Interamericano de Recursos del AguaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Maestría en Ingeniería Aplicada Orientación Recursos HidráulicosUniversidad Autónoma de ZacatecasZacatecasMexico
  3. 3.Department of Soil and WaterEstación Experimental de Aula Dei (EEAD), CSICZaragozaSpain

Personalised recommendations