Advertisement

Irrigation Science

, Volume 31, Issue 5, pp 1173–1184 | Cite as

Estimation of instantaneous and daily net radiation from MODIS data under clear sky conditions: a case study in East Asia

  • Kyotaek Hwang
  • Minha Choi
  • Seung Oh Lee
  • Jong-Won Seo
Original Paper

Abstract

The Moderate Resolution Imaging Spectroradiometer-based net radiation (R N) model was built and applied in East Asia in 2005. Because there have hardly been simple parameterization schemes developed over a large area using remote-sensing technology, the model was aimed to present physical simplicity in complex topography at multiple spatiotemporal scales. The model successfully reproduced the instantaneous R N values obtained at four flux tower sites having individually different ecohydrology. The diurnal cycle of R N was contextually simulated using a simple sine curve to determine the daily and monthly average net radiation. The diurnal R N estimation method was proven to be a reliable model as long as accurate boundary conditions, sunrise and sunset times, for example, were obtained. The monthly average net radiation (MANR) was estimated using the diurnal patterns of the instantaneous R N. Distribution of the monthly R N demonstrated that elevation and latitude were the primary factors affecting the MANR. The proposed R N algorithm turned out to be a promising method for valuable applications in various fields due to systematic simplicity and fewer input parameters.

Keywords

Root Mean Square Error Normalize Difference Vegetation Index Diurnal Cycle Land Surface Temperature Advanced Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (2012-0002516). This research was also supported by a grant (development of spatial mapping for ET and soil moisture using remote sensing data) from the Hydrological Survey Center, Korea. Data were provided by KoFlux from projects funded by the Ministry of Land, Transport and Maritime Affairs, the Korea Forest Research Institute, and the Korea Science and Engineering Foundation.

References

  1. Asiaflux website (2012) Site information. http://asiaflux.net/network.html/. Accessed 2 Oct 2012
  2. Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng ASCE 122(2):97–106. doi: 10.1061/(asce)0733-9437(1996) CrossRefGoogle Scholar
  3. Allen RG (2005) The ASCE standardized reference evapotranspiration equation. American Society of Civil Engineers, RestonGoogle Scholar
  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, RomeGoogle Scholar
  5. Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng ASCE 133(4):380–394. doi: 10.1061/(asce)0733-9437(2007) CrossRefGoogle Scholar
  6. Bastiaanssen W (1995) Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in mediterranean climates. Dissertation, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  7. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 212–213:198–212CrossRefGoogle Scholar
  8. Bird RE, Hulstrom RL (1981) Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar Energy Research Institute, GoldenCrossRefGoogle Scholar
  9. Bisht G, Bras RL (2010) Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sens Environ 114(7):1522–1534. doi: 10.1016/j.rse.2010.02.007 CrossRefGoogle Scholar
  10. Bisht G, Bras RL (2011) Estimation of net radiation from the moderate resolution imaging spectroradiometer over the continental united states. IEEE Trans Geosci Remote 49(6):2448–2462. doi: 10.1109/tgrs.2010.2096227 CrossRefGoogle Scholar
  11. Bisht G, Venturini V, Islam S, Jiang L (2005) Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens Environ 97(1):52–67. doi: 10.1016/j.rse.2005.03.014 CrossRefGoogle Scholar
  12. Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11(5):742–744CrossRefGoogle Scholar
  13. Cai G, Xue Y, Hu Y, Guo J, Wang Y, Qi S (2007) Quantitative study of net radiation from MODIS data in the lower boundary layer in Poyang Lake area of Jiangxi Province, China. Int J Remote Sens 28(19):4381–4389. doi: 10.1080/01431160701244831 CrossRefGoogle Scholar
  14. Choi M, Jacobs JM, Kustas WP (2008) Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA. Geophys Res Lett 35(20). doi: 10.1029/2008gl035731
  15. Crawford TM, Duchon CE (1999) An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J Appl Meteorol 38(4):474–480CrossRefGoogle Scholar
  16. Duffie JA, Beckman WA (1980) Solar engineering of thermal processes. NASA STI/Recon technical report A, vol 81Google Scholar
  17. Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li SG, Nakai Y, Takagi K, Tani M, Wang H (2008) Spatial distribution of carbon balance in forest ecosystems across East Asia. Agric For Meteorol 148(5):761–775. doi: 10.1016/j.agrformet.2007.11.016 CrossRefGoogle Scholar
  18. Hurtado E, Sobrino JA (2001) Daily net radiation estimated from air temperature and NOAA-AVHRR data: a case study for the Iberian Peninsula. Int J Remote Sens 22(8):1521–1533Google Scholar
  19. Inoue Y, Peñuelas J, Miyata A, Mano M (2008) Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sens Environ 112(1):156–172. doi: 10.1016/j.rse.2007.04.011 CrossRefGoogle Scholar
  20. Jacobs JM, Myers DA, Anderson MC, Diak GR (2002) GOES surface insolation to estimate wetlands evapotranspiration. J Hydrol 266(1–2):53–65. doi: 10.1016/s0022-1694(02)00117-8 CrossRefGoogle Scholar
  21. Jin Y, Randerson JT, Goulden ML (2011) Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sens Environ 115:2302–2319. doi: 10.1016/j.rse.2011.04.031 CrossRefGoogle Scholar
  22. Kjaersgaard JH, Cuenca RH, Plauborg FL, Hansen S (2007) Long-term comparisons of net radiation calculation schemes. Bound Layer Meteorol 123(3):417–431. doi: 10.1007/s10546-006-9151-8 CrossRefGoogle Scholar
  23. Kwon H, Kim J, Hong J (2009) Influence of the Asian Monsoon on net ecosystem carbon exchange in two major plant functional types in Korea. Biogeosci Discuss 6(6):10279–10309CrossRefGoogle Scholar
  24. Lagouarde JP, Brunet Y (1993) A simple model for estimating the daily upward longwave surface radiation flux from NOAA-AVHRR data. Int J Remote Sens 14(5):907–925CrossRefGoogle Scholar
  25. Long D, Gao Y, Singh VP (2010) Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days. J Hydrol 388:217–233. doi: 10.1016/j.jhydrol.2010.04.042 CrossRefGoogle Scholar
  26. Masuoka E, Fleig A, Wolfe RE, Patt F (1998) Key characteristics of MODIS data products. IEEE Trans Geosci Remote 36(4):1313–1323. doi: 10.1109/36.701081 CrossRefGoogle Scholar
  27. Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536. doi: 10.1016/j.rse.2007.04.015 CrossRefGoogle Scholar
  28. Offerle B, Grimmond CSB, Oke TR (2003) Parameterization of net all-wave radiation for urban areas. J Appl Meteorol 42(8):1157–1173CrossRefGoogle Scholar
  29. Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J Roy Meteorol Soc 122(533):1127–1151CrossRefGoogle Scholar
  30. Ryu Y, Kang S, Moon SK, Kim J (2008) Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agric For Meteorol 148(10):1538–1552. doi: 10.1016/j.agrformet.2008.05.008 CrossRefGoogle Scholar
  31. Saito M, Asanuma J, Miyata A (2007) Dual-scale transport of sensible heat and water vapor over a short canopy under unstable conditions. Water Resour Res 43(5). doi: 10.1029/2006wr005136
  32. Samani Z, Bawazir SA, Bleiweiss M, Skaggs R, Tran VD (2007) Estimating daily net radiation over vegetation canopy through remote sensing and climatic data. J Irrig Drain Eng ASCE 133(4):291–297. doi: 10.1061/(asce)0733-9437(2007) CrossRefGoogle Scholar
  33. Shi T, Guan D, Wang A, Wu J, Jin C, Han S (2008) Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrol Process 22(17):3431–3443. doi: 10.1002/hyp.6922 CrossRefGoogle Scholar
  34. Sugita M, Brutsaert W (1993) Cloud effect in the estimation of instantaneous downward longwave radiation. Water Resour Res 29(3):599–605. doi: 10.1029/92wr02352 CrossRefGoogle Scholar
  35. Tang B, Li Z-L (2008) Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens Environ 112:3482–3492. doi: 10.1016/j.rse.2008.04.004 CrossRefGoogle Scholar
  36. Tasumi M (2003) Progress in operational estimation of regional evapotranspiration using satellite imagery. Dissertation, University of IdahoGoogle Scholar
  37. Wang W, Liang S (2008) Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data. Remote Sens Environ 113:745–754. doi: 10.1016/j.rse.2008.12.004 CrossRefGoogle Scholar
  38. Wang K, Liang S (2009) Estimation of daytime net radiation from shortwave radiation measurements and meteorological observations. J Appl Meteorol Climatol 48:634–643. doi: 10.1175/2008JAMC1959.1 CrossRefGoogle Scholar
  39. Zillman J (1972) A study of some aspects of the radiation and heat budgets of the southern hemisphere oceans. Australian Government Publishing ServiceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kyotaek Hwang
    • 1
    • 3
  • Minha Choi
    • 1
  • Seung Oh Lee
    • 2
  • Jong-Won Seo
    • 1
  1. 1.Department of Civil and Environmental EngineeringHanyang UniversitySeoulKorea
  2. 2.School of Urban and Civil EngineeringHongik UniversitySeoulKorea
  3. 3.Water Resources Research DivisionKorea Institute of Construction TechnologyGoyang-siKorea

Personalised recommendations