Irrigation Science

, Volume 30, Issue 6, pp 485–497 | Cite as

Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images

  • M. Carrasco-Benavides
  • S. Ortega-Farías
  • L. O. Lagos
  • J. Kleissl
  • L. Morales
  • C. Poblete-Echeverría
  • R. G. Allen
Original Paper


A field experiment was carried out to evaluate the METRIC (mapping evapotranspiration at high resolution with internalized calibration) model to estimate the actual evapotranspiration (ETa) and crop coefficient (K c) of a drip-irrigated Merlot vineyard during the 2007/2008 and 2008/2009 growing seasons. The Merlot vineyard located in the Talca Valley (Chile) was trained on a vertical shoot positioned system. The performance of METRIC was evaluated using measurements of ETa and K c from an eddy covariance (EC) system. METRIC overestimated ETa by about 9 % with a root mean square error (RMSE) and mean absolute error (MAE) of 0.62 and 0.50 mm d−1, respectively. For the main phenological stages of the Merlot vineyard, METRIC overestimated the K c by about 10 % with RMSE = 0.10 and MAE = 0.08. Furthermore, the indexes of agreement were 0.70 for K c and 0.85 for ETa. Mean values of K c measured from EC were 0.41, 0.53, 0.56, and 0.46, while those estimated by METRIC were 0.46, 0.54, 0.59, and 0.62 for the bud break to flowering, flowering to fruit set, fruit set to veraison, and veraison to harvest stages, respectively.


Root Mean Square Error Normalize Difference Vegetation Index Eddy Covariance Mean Absolute Error Surface Energy Balance 

List of symbols


Conversion factor


Specific heat capacity of air (J kg−1 K−1)


Daily actual evapotranspiration (mm d−1)


Daily actual evapotranspiration obtained from an eddy covariance (mm d−1)


Hourly ETa obtained from the EC system (mm d−1)


Daily ETa computed for METRIC for each pixel (mm d−1)


Hourly ETa at the instant of satellite image measured, obtained from an eddy covariance (mm h−1)


Instantaneous ETa calculated for METRIC for each pixel (mm h−1)


Daily reference evapotranspiration (for grass) (mm d−1)


Hourly reference evapotranspiration computed by the Penman–Monteith model (for grass) (mm h−1)


Hourly reference evapotranspiration at the time of satellite overpass (mm h−1)


Daily reference evapotranspiration (for fully covered alfalfa) (mm d−1)


Soil surface covered by vegetation or fraction cover (%)


Hourly reference evapotranspiration fraction from 8:00 to 18:00 h, obtained from an eddy covariance (dimensionless)


Instantaneous reference evapotranspiration fraction obtained from an eddy covariance at the time of satellite overpass (dimensionless)


Reference evapotranspiration fraction (F o) computed by METRIC at the time of satellite overpass (dimensionless)


Mean values of hourly ETo fraction along the daytime (dimensionless)


Hourly reference evapotranspiration fraction (dimensionless)


Soil heat flux (W m−2)


Soil heat flux for short reference surface (grass) (MJ m−2 h−1)


Sensible heat flux (W m−2)


Single crop coefficient (ETa/ETo) (dimensionless)


Crop coefficient estimated by eddy covariance (dimensionless)


Crop coefficient estimated by METRIC (dimensionless)


Leaf area index (m2 m−2)


Latent heat flux (W m−2)


Normalized difference vegetation index (dimensionless)


Aerodynamic resistance to heat transport (s m−1)


Fetch-to-height ratio (dimensionless)


Relative humidity (%)


Relative humidity for a short reference surface (%)


Outcoming longwave radiation (W m−2)


Incoming longwave radiation (W m−2)


Net radiation (W m−2)


Net radiation over a short reference surface (grass) (MJ m−2 h−1)


Incoming shortwave radiation (W m−2)


Incoming solar radiation (W m−2)


Incoming solar radiation in reference conditions (grass) (MJ m−2 d−1)


Outgoing solar radiation (W m−2)


Soil-adjusted vegetation index (dimensionless)


Air temperature (°C)


Air temperature for short reference surface (grass) (°C)


Surface temperature calculated for each pixel (°K)


Wind speed (m s−1)


Mean wind speed at 2-m height (m s−1)


Vapour pressure deficit (kPa)


Wind direction (°N)


Broadband surface albedo (dimensionless)


Slope of the saturation curve (kPa °C−1)


Linear empirical function that represents the near surface to air temperature difference (°K)


Surface emissivity (dimensionless)


Volumetric soil water content at field capacity (m3 m−3)


Volumetric soil water content (m3 m−3)


Volumetric soil water content at wilting point (m3 m−3)


Latent heat of vaporization (J kg−1)


Air density (kg m−3)


Water density (kg m−3)


Psychrometric constant (kPa °C−1)


Midday stem water potential (MPa)



The research leading to this report was supported by Chilean government through the projects FONDECYT (N° 1071040) and Comisión Nacional de Riego (CNR-SEPOR). We thank Dr. César Acevedo and M. S. Edmond Khzam for their help in the data analysis and Maria Jose Simeone, Mauricio Zuñiga, Alfonso Avalo, Nicolas Verdugo, Miguel Araya, Leopoldo Fonseca and Christian Araya of the University of Talca and to Ricardo Marin and Alvaro Belmar of Jackson Wine Estates—Chile, for their support in the field measurements and experiment maintenance.


  1. Acevedo-Opazo C, Tisseyre B, Guillaume S, Ojeda H (2008) The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precis Agric 9(5):285–302CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements, vol 56. FAO Irrigation and Drainage Paper (FAO), ItalyGoogle Scholar
  3. Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW (2007a) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) applications. J Irrig Drain Eng ASCE 133(4):395–406CrossRefGoogle Scholar
  4. Allen RG, Tasumi M, Trezza R (2007b) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. J Irrig Drain Eng ASCE 133(4):380–394CrossRefGoogle Scholar
  5. Allen RG, Tasumi M, Trezza R, Kjaersgaard JH (2010) METRIC—mapping evapotranspiration at high resolution, application manual.
  6. Allen R, Irmak A, Trezza R, Hendrickx JMH, Bastiaanssen W, Kjaersgaard J (2011) Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol Process 25(26):4011–4027CrossRefGoogle Scholar
  7. Annandale JG, Stockle CO (1994) Fluctuation of crop evapotranspiration coefficients with weather: a sensitivity analysis. Irrig Sci 15(1):1–7CrossRefGoogle Scholar
  8. ASCE-EWRI (2005) The ASCE standarized reference evapotranspiration equation. Report of the ASCE-EWRI task committee on standarization of reference evapotranspirationGoogle Scholar
  9. Balbontin-Nesvara C, Calera-Belmonte A, Gonzalez-Piqueras J, Campos-Rodriguez I, Lopez-Gonzalez ML, Torres-Prieto E (2010) Vineyard evapotranspiration measurements in a semiarid environment: eddy covariance and Bowen ratio comparison. Agrociencia 45(1):87–103Google Scholar
  10. Barbagallo S, Consoli S, Russo A (2009) A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes. Sensors 9(1):1–21PubMedCrossRefGoogle Scholar
  11. Basinger AR, Hellman EW (2007) Evaluation of regulated deficit irrigation on grape in Texas and implications for acclimation and cold hardiness. Int J Fruit Sci 6(2):3–22CrossRefGoogle Scholar
  12. Bastiaanssen WGM, Bos MG (1999) Irrigation performance indicators based on remotely sensed data: a review of literature. Irrig Drain Syst 13(4):291–311CrossRefGoogle Scholar
  13. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J Hydrol 213(1–4):198–212CrossRefGoogle Scholar
  14. Bausch WC (1995) Remote-sensing of crop coefficients for improving the irrigation scheduling of corn. Agric Water Manag 27(1):55–68CrossRefGoogle Scholar
  15. Campos I, Neale CMU, Calera A, Balbontín C, González-Piqueras J (2010) Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric Water Manag 98(1):45–54CrossRefGoogle Scholar
  16. Chávez J, Neale C, Prueger J, Kustas W (2008) Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values. Irrig Sci 27(1):67–81CrossRefGoogle Scholar
  17. Colaizzi PD, Evett SR, Howell TA, Tolk JA (2006) Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements. Trans ASABE 49(5):1409–1417Google Scholar
  18. Folhes MT, Renno CD, Soares JV (2009) Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agric Water Manag 96(10):1398–1408CrossRefGoogle Scholar
  19. Galleguillos M, Jacob F, Prevot L, Lagacherie P, Liang SL (2011) Mapping daily evapotranspiration over a Mediterranean vineyard watershed. IEEE Geosci Remote Sens Lett 8(1):168–172CrossRefGoogle Scholar
  20. Gowda PH, Chávez JL, Colaizzi PD, Evett SR, Howell TA, Tolk JA (2007) Remote sensing based energy balance algorithms for mapping ET: current status and future challenges. Trans ASABE 50(5):1639–1644Google Scholar
  21. Gowda P, Chavez J, Colaizzi P, Evett S, Howell T, Tolk J (2008) ET mapping for agricultural water management: present status and challenges. Irrig Sci 26(3):223–237CrossRefGoogle Scholar
  22. Heilman JL, McInnes KJ, Gesch RW, Lascano RJ, Savage MJ (1996) Effects of trellising on the energy balance of a vineyard. Agric For Meteorol 81(1–2):79–93CrossRefGoogle Scholar
  23. Jagtap SS, Jones JW (1989) Stability of crop coefficients under different climate and irrigation management practices. Irrig Sci 10(3):231–244CrossRefGoogle Scholar
  24. Kalma J, McVicar T, McCabe M (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29(4):421–469CrossRefGoogle Scholar
  25. Kleissl J, Hong SH, Hendrickx JMH (2009) New Mexico scintillometer network supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90(2):207CrossRefGoogle Scholar
  26. Kordova-Biezuner L, Mahrer I, Schwartz C (2000) Estimation of actual evapotranspiration from vineyard by utilizing eddy correlation method. Acta Hort (ISHS) 537:167–175Google Scholar
  27. Laubach J, Teichmann U (1999) Surface energy budget variability: a case study over grass with special regard to minor inhomogeneities in the source area. Theor Appl Climatol 62(1):9–24CrossRefGoogle Scholar
  28. Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68:21–32CrossRefGoogle Scholar
  29. Nadal M, Arola L (1995) Effects of limited irrigation on the composition of must and wine of Cabernet Sauvignon under semi-arid conditions. Vitis 34:151–154Google Scholar
  30. NASA (2010) Landsat 7 science data users handbookGoogle Scholar
  31. Oliver HR, Sene KJ (1992) Energy and water balances of developing vines. Agric For Meteorol 61(3–4):167–185CrossRefGoogle Scholar
  32. Ortega-Farias S, Carrasco M, Olioso A, Acevedo C, Poblete C (2007) Latent heat flux over Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model. Irrig Sci 25(2):161–170CrossRefGoogle Scholar
  33. Ortega-Farias S, Irmak S, Cuenca R (2009) Special issue on evapotranspiration measurement and modeling. Irrig Sci 28(1):1–3CrossRefGoogle Scholar
  34. Ortega-Farias S, Poblete-Echeverría C, Brisson N (2010) Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric For Meteorol 150(2):276–286CrossRefGoogle Scholar
  35. Poblete-Echeverria C, Ortega-Farias S (2009) Estimation of actual evapotranspiration for a drip-irrigated Merlot vineyard using a three-source model. Irrig Sci 28(1):65–78CrossRefGoogle Scholar
  36. Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B Hydrol Ocean Atmos 25(2):147–157CrossRefGoogle Scholar
  37. Samani Z, Bawazir AS, Bleiweiss M, Skaggs R, Longworth J, Tran VD, Pinon A (2009) Using remote sensing to evaluate the spatial variability of evapotranspiration and crop coefficient in the lower Rio Grande Valley. New Mexico Irrig Sci 28(1):93–100CrossRefGoogle Scholar
  38. Santos C, Lorite IJ, Tasumi M, Allen RG, Fereres E (2008) Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig Sci 26(3):277–288CrossRefGoogle Scholar
  39. Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound Layer Meteorol 26:81–93CrossRefGoogle Scholar
  40. Schultz H, Matthews M (1993) Growth, osmotic adjustment, and cell-wall mechanics of expanding grape leaves during water deficits. Crop Sci 33:287–294CrossRefGoogle Scholar
  41. Seguin B, Courault D, Guérif M (1994) Surface temperature and evapotranspiration: application of local scale methods to regional scales using satellite data. Remote Sens Environ 49(3):287–295CrossRefGoogle Scholar
  42. Sene KJ (1994) Parameterisations for energy transfers from a sparse vine crop. Agric For Meteorol 71(1–2):1–18CrossRefGoogle Scholar
  43. Singh RK, Irmak A (2009) Estimation of crop coefficients using satellite remote sensing. J Irrig Drain Eng ASCE 135(5):597–608CrossRefGoogle Scholar
  44. Singh RK, Irmak A (2011) Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrol Sci J 56(5):895–906CrossRefGoogle Scholar
  45. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99CrossRefGoogle Scholar
  46. Tasumi M (2003) Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D., University of Idaho, Idaho, USAGoogle Scholar
  47. Tasumi M, Allen RG, Trezza R, Wright JL (2005) Satellite-based energy balance to assess within-population variance of crop coefficient curves. J Irrig Drain Eng ASCE 131(1):94–109CrossRefGoogle Scholar
  48. Teixeira AHDC, Bastiaanssen WGM, Bassoi LH (2007) Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil. Agric Water Manag 94(1–3):31–42CrossRefGoogle Scholar
  49. Teixeira A, Bastiaanssen WGM, Ahmad MD, Bos MG (2009a) Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil part A: calibration and validation. Agric For Meteorol 149(3–4):462–476CrossRefGoogle Scholar
  50. Teixeira A, Bastiaanssen WGM, Ahmad MD, Bos MG (2009b) Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil part B: application to the regional scale. Agric For Meteorol 149(3–4):477–490CrossRefGoogle Scholar
  51. Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric For Meteorol 121(1–2):1–18CrossRefGoogle Scholar
  52. Trezza R (2002) A satellite-based surface energy balance with standardized ground control. Ph.D., Utah State University, USAGoogle Scholar
  53. Trezza R (2006) Evapotranspiration from a remote sensing model for water management in the Rio Guarico irrigation system, Venezuela. Intersciencia 31(6):417–423Google Scholar
  54. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300CrossRefGoogle Scholar
  55. Webb E, Pearman G, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteor Soc 106:85–100CrossRefGoogle Scholar
  56. Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Bound Layer Meteorol 99(1):127–150CrossRefGoogle Scholar
  57. Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90(5):8995–9005CrossRefGoogle Scholar
  58. Yunusa IAM, Walker RR, Loveys BR, Blackmore DH (2000) Determination of transpiration in irrigated grapevines: comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrig Sci 20(1):1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Carrasco-Benavides
    • 1
  • S. Ortega-Farías
    • 1
  • L. O. Lagos
    • 2
  • J. Kleissl
    • 3
  • L. Morales
    • 4
  • C. Poblete-Echeverría
    • 1
  • R. G. Allen
    • 5
  1. 1.Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA)Universidad de TalcaTalcaChile
  2. 2.Department of Recursos Hídricos, Facultad de Ingeniería AgrícolaUniversidad de ConcepciónChillánChile
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaSan DiegoUSA
  4. 4.Department of Ciencias Ambientales y Recursos Naturales RenovablesUniversidad de ChileSantiagoChile
  5. 5.Biological and Agricultural Engineering and Civil Engineering, Research and Extension CenterUniversity of IdahoKimberlyUSA

Personalised recommendations