Irrigation Science

, Volume 24, Issue 1, pp 37–48 | Cite as

Simulation of furrow irrigation practices (SOFIP): a field-scale modelling of water management and crop yield for furrow irrigation

  • Jean Claude Mailhol
  • Pierre Ruelle
  • Zornitsa Popova
Original Paper

Abstract

Because of the spatial and temporal variabilities of the advance infiltration process, furrow irrigation investigations should not be limited to a single furrow irrigation event when using a modelling approach. The paper deals with the development and application of simulation of furrow irrigation practices (SOFIP), a model used to analyse furrow irrigation practices that take into account spatial and temporal variabilities of the advance infiltration process. SOFIP can be used to compare alternative furrow irrigation management strategies and find options that mitigate local deep-percolation risks while ensuring a crop yield level that is acceptable to the farmer. The model is comprised of three distinct modelling elements. The first element is RAIEOPT, a hydraulic model that predicts the advance infiltration process. Infiltration prediction in RAIEOPT depends on a soil moisture deficit parameter. PILOTE, a crop model, which is designed to simulate soil water balance and predict yield values, updates the soil moisture parameter. This parameter is an input of a parameter generator (PG), the third model component, which in turn provides RAIEOPT with the data required to simulate irrigation at the scale of an N-furrow set. The study of sources of variability and their impact on irrigation advance, based on field observations, allowed us to build a robust PG. Model applications show that irrigation practices must account for inter-furrow advance variability when optimising furrow irrigation systems. The impact of advance variability on deep percolation and crop yield losses depends on both climatic conditions and irrigation practices.

References

  1. Alvarez JAR (2003) Estimation of advance and infiltration equation in furrow irrigation for untested discharges. Agric Water Manag 60:227–239CrossRefGoogle Scholar
  2. Bautista E, Wallender WW (1985) Spatial variability of infiltration in furrows. Trans ASAE 28(6):1846–1855Google Scholar
  3. Bautista E, Wallender WW (1992) Hydrodynamic furrow irrigation model with specified space steps. J Irrig Drain Eng ASCE 118(3):450–465CrossRefGoogle Scholar
  4. Berthomé P (1991) Modélisation de l’infiltration en irrigation à la raie. Résolutions numériques et analytiques Application à l’étude de la conduite des arrosages. Thèse de doctorat (PhD), Inst. Polytech. de Toulouse, 200 pGoogle Scholar
  5. Childs JL, Wallender WW, Hopmans JW (1993) Spatial and seasonal variation of furrow infiltration. J Irrig Drain Eng ASCE 119(1):74–90CrossRefGoogle Scholar
  6. Elliot RL, Walker WR (1982) Field evaluation of furrow irrigation and advance functions. Trans ASAE 25(6):396–400Google Scholar
  7. Gonzalez Gamacho JM (1991) Modèlisation stochastique d’une irrigation à la raie. Thèse de doctorat (PhD), Univ Montpellier II, 270 pGoogle Scholar
  8. Lamacq S, Wallender WW (1994) Soil water model for evaluating water delivery flexibility. J Irrig Drain Eng ASCE 120(4):756–774CrossRefGoogle Scholar
  9. Lewis MR, Milne WE (1938) Analysis of border irrigation. Agric Eng 19:267–272Google Scholar
  10. Mailhol JC (2001) Contribution à l’amélioration des pratiques d’irrigation à la raie par une modélisation simplifiée à l’échelle de la parcelle et de la saison. Thèse de doctorat (PhD), Univ Montellier II, 276 p+annexesGoogle Scholar
  11. Mailhol JC (2003) Validation of a predictive form of Horton infiltration for simulating furrow irrigation. J Irrig Drain Eng ASCE 129(6):412–421CrossRefGoogle Scholar
  12. Mailhol JC, Gonzalez G (1993) Furrow irrigation model for real-time applications on cracking soils. J Irrig Drain Eng ASCE 119(5):768–783CrossRefGoogle Scholar
  13. Mailhol JC, Ruelle P, Revol Ph, Delage L, Lescot JM (1996) Operative modelling for actual evapotranspiration assessment: calibration methodology. In: ASAE proceeding of international conference, 3–6 Nov, San Antonio (Texas), pp 474–479Google Scholar
  14. Mailhol JC, Baqri H, Lachhab M (1997a) Operative irrigation furrow modelling for real-time applications on closed-end furrows. Irrig Drain Syst 11:347–366CrossRefGoogle Scholar
  15. Mailhol JC, Olufayo A, Ruelle P (1997b) Sorghum and sunflower evapotranspiration and yield from simuated area index. Agric Water Manag 35:167–182CrossRefGoogle Scholar
  16. Mailhol JC, Priol M, Benali M (1999) A furrow irrigation model to improve irrigation practices in the Gharb valley of Morocco. Agric Water Manag 42:65–80CrossRefGoogle Scholar
  17. Mailhol JC, Ruelle P, Nemeth I (2001) Impact of fertilisation practices on nitrogen leaching under irrigation. Irrig Sci 20:139–147CrossRefGoogle Scholar
  18. Mailhol JC, Ruelle P (1999) Un outil opérationnel pour l’analyse des stratégies d’irrigation du maïs au moyen d’un canon enrouleur ICID 17ième congrès international Grenade 11–19 Sept. 1999Google Scholar
  19. Mantovani EC, Villalobos FJ, Orgaz F, Fereres E (1995) Modelling the effects of sprinkler irrigation uniformity on crop yield. Agric Water Manag 27:243–257CrossRefGoogle Scholar
  20. Or D (1996) Wetting-inducing soil structure changes. The theory of liquid phase sintering. Water Resour Res 2(10):3041–3049CrossRefGoogle Scholar
  21. Oyonarte NA, Mateos L, Palomo MJ (2002) Infiltration variability in furrow irrigation. J Irrig Drain Eng 128:1(26), 26–33Google Scholar
  22. Philip JR, Farell DN (1964) General solution of the infiltration advance problem in irrigation hydraulics. J Geophys Res 69(4):624–631CrossRefGoogle Scholar
  23. Pimentel LR (1987) L‘irrigation à la planche: développement et évaluation d’un nouveau modèle pour simuler et prédire l’avancement du front couplé à l’infiltration. Thèse de doctorat, Univ. J. Fourier, GrenobleGoogle Scholar
  24. Popova Z, Kuncheva R (1996) Modelling in water losses evaluation for non-homogeneous furrow set. J Irrig Drain Eng ASCE 122(1):1–6CrossRefGoogle Scholar
  25. Renault D, Wallender WW (1992) ALIVE advance linear velocity: a flow rate balance theory for surface irrigation. J Irrig Drain Eng ASCE 118(1):135–155CrossRefGoogle Scholar
  26. Renault D, Wallender WW (1994) Furrow advance solution for stochastic infiltration properties. J Irrig Drain Eng ASCE 120(3):617–633CrossRefGoogle Scholar
  27. Reynolds WD, Elrick DE (1985) In situ measurements of field saturated conductivity, sorptivity and the α-parameter using the Guelph permeameter. Soil Sci 140:292–301CrossRefGoogle Scholar
  28. Schaap MG, Leij FJ (1998) Using neuronal networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Res 47:37–42CrossRefGoogle Scholar
  29. Schwankl L, Raghuwanshi J, Wallender WW (2000) Furrow irrigation performance under spatially varying conditions. J Irrig Drain Eng ASCE 126(6):355–361CrossRefGoogle Scholar
  30. Shepard JS, Wallender WW, Hopmans JW (1993) One point method for estimation infiltration. Trans ASAE 36(2):395–404Google Scholar
  31. Tron G, Peyremorte P, Berthomé P (1988) Développement des moyens pour améliorer la conduite des irrigations de surface: Conduite des arrosages en systèmes gravitaire modernisés. Rapport d’étude Cemagref, SCP, 30 p+AnnexesGoogle Scholar
  32. Vauclin M, Elrick DE, Thony JL, Vachaud G, Revol P, Ruelle P (1994) Hydraulic conductivity measurements of the spatial variability of a loamy soil. Soil Tech 7:180–195Google Scholar
  33. Verrecken H, Maes J, Feyen J (1990) Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci 149(1):1–12CrossRefGoogle Scholar
  34. Wallender WW (1986) Furrow model with spatially varying infiltration. Trans ASAE 29(4):1012–1015Google Scholar
  35. White I, Sully J (1987) Macroscopic and microscopic capillarity length and time scale from filed infiltration. Water Resour Res 23:1514–1522CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jean Claude Mailhol
    • 1
  • Pierre Ruelle
    • 1
  • Zornitsa Popova
    • 2
  1. 1.Researchers at CemagrefMontpellierFrance
  2. 2.N. Poushkarov Institute for Soil Sciences and AgroecologySofiaBulgaria

Personalised recommendations