Advertisement

In Vitro Bovine Liver Experiment of Cisplatin-Infused and Normal Saline-Infused Radiofrequency Ablation with an Internally Cooled Perfusion Electrode

  • Myung Sub Kim
  • Hyun Pyo HongEmail author
  • Kyungmin Park
  • Kyung A. Kang
  • Sung Ryol Lee
Laboratory Investigation

Abstract

Purpose

To evaluate the efficacy of cisplatin-infused and normal saline-infused radiofrequency ablation (RFA) with internally cooled perfusion (ICP) electrode.

Materials and Methods

Using a 200 W generator, thirty ablation zones were created and divided into three groups of 10 each as follows: group A, RFA alone with 16 gauge monopolar internally cooled (IC) electrode; group B, cisplatin-infused RFA with 16 gauge ICP electrode; and group C, normal saline-infused RFA with 16 gauge ICP electrode. Radiofrequency was applied to the explanted bovine liver for 12 min. During RFA, cisplatin and normal saline were injected into tissue at a rate of 0.5 mL/min through the ICP electrode by injection pump. Dimensions of the ablation zone and technical parameters were compared between the three groups.

Result

In the cisplatin-infused RFA group, the ablation zone size was significantly larger than that of the RFA-alone group but significantly smaller than normal saline-infused RFA group. The width of longitudinal section and volume were 3.39 ± 0.22 cm2 and 26.55 ± 4.62 cm3 in RFA-alone group, 3.88 ± 0.32 cm2 and 36.45 ± 5.46 cm3 in cisplatin-infused RFA group, and 4.52 ± 0.50 cm2 and 49.44 ± 7.55 cm3 in normal saline-infused RFA group, respectively (p < 0.05 between any two groups). The mean impedance in group A, B, and C were 60.0 ± 7.2, 50.3 ± 2.5, and 40.3 ± 4.0 Ω, respectively (p < 0.05 between any two groups).

Conclusion

Cisplatin-infused RFA with ICP electrode created the larger size of ablation zone than that of monopolar RFA with an IC electrode, but created the smaller size of ablation zone than that of normal saline-infused RFA.

Keywords

Liver Interventional procedures Radiofrequency ablation Experimental study 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    McGhana JP, Dodd GD 3rd. Radiofrequency ablation of the liver: current status. AJR Am J Roentgenol. 2001;176(1):3–16.Google Scholar
  2. 2.
    Lim HK. Radiofrequency thermal ablation of hepatocellular carcinomas. Korean J Radiol. 2000;1(4):175–84.Google Scholar
  3. 3.
    Decadt B, Siriwardena AK. Radiofrequency ablation of liver tumours: systematic review. Lancet Oncol. 2004;5(9):550–60.Google Scholar
  4. 4.
    Kim YS, Lim HK, Rhim H, Lee MW, Choi D, Lee WJ, Paik SW, Koh KC, Lee JH, Choi MS, Gwak GY, Yoo BC. Ten-year outcomes of percutaneous radiofrequency ablation as first-line therapy of early hepatocellular carcinoma: analysis of prognostic factors. J Hepatol. 2013;58(1):89–97.Google Scholar
  5. 5.
    Kim YS, Lim HK, Rhim H, Lee MW. Ablation of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 2014;28(5):897–908.Google Scholar
  6. 6.
    Lee JM, Lee YH, Kim YK, Kim SW, Kim SH, Han JK, Choi BI. Combined treatment of radiofrequency ablation and acetic acid injection: an in vivo feasibility study in rabbit liver. Eur Radiol. 2004;14(7):1303–10.Google Scholar
  7. 7.
    Kurokohchi K, Watanabe S, Masaki T, Hosomi N, Miyauchi Y, Himoto T, Kimura Y, Nakai S, Deguchi A, Yoneyama H, Yoshida S, Kuriyama S. Comparison between combination therapy of percutaneous ethanol injection and radiofrequency ablation and radiofrequency ablation alone for patients with hepatocellular carcinoma. World J Gastroenterol. 2005;11(10):1426–32.Google Scholar
  8. 8.
    Veltri A, Moretto P, Doriguzzi A, Pagano E, Carrara G, Gandini G. Radiofrequency thermal ablation (RFA) after transarterial chemoembolization (TACE) as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC). Eur Radiol. 2006;16(3):661–9.Google Scholar
  9. 9.
    Goldberg SN, Kamel IR, Kruskal JB, Reynolds K, Monsky WL, Stuart KE, Ahmed M, Raptopoulos V. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179(1):93–101.Google Scholar
  10. 10.
    Rossi S, Garbagnati F, Lencioni R, Allgaier HP, Marchiano A, Fornari F, Quaretti P, Tolla GD, Ambrosi C, Mazzaferro V, Blum HE, Bartolozzi C. Percutaneous radio-frequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology. 2000;217(1):119–26.Google Scholar
  11. 11.
    Luo RG, Gao F, Gu YK, Huang JH, Li CL. Radioablation settings affecting the size of lesions created ex vivo in porcine livers with monopolar perfusion electrodes. Acad Radiol. 2010;17(8):980–4.Google Scholar
  12. 12.
    Kettenbach J, Kostler W, Rucklinger E, Gustorff B, Hupfl M, Wolf F, Peer K, Weigner M, Lammer J, Muller W, Goldberg SN. Percutaneous saline-enhanced radiofrequency ablation of unresectable hepatic tumors: initial experience in 26 patients. AJR Am J Roentgenol. 2003;180(6):1537–45.Google Scholar
  13. 13.
    Bruners P, Muller H, Gunther RW, Schmitz-Rode T, Mahnken AH. Fluid-modulated bipolar radiofrequency ablation: an ex vivo evaluation study. Acta Radiol. 2008;49(3):258–66.Google Scholar
  14. 14.
    Lubienski A, Dux M, Lubienski K, Grenacher L, Kauffmann G. Radiofrequency thermal ablation: increase in lesion diameter with continuous acetic acid infusion. Cardiovasc Intervent Radiol. 2005;28(6):789–94.Google Scholar
  15. 15.
    Luo RG, Fao F, Huang JH, Gu YK, Jiang XY, Huang YJ. Diluted hydrochloric acid generates larger radiofrequency ablation lesions in excised porcine livers. Diagn Interv Radiol. 2013;19(2):145–9.Google Scholar
  16. 16.
    Goldberg SN, Saldinger PF, Gazelle GS, Huertas JC, Stuart KE, Jacobs T, Kruskal JB. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intratumoral doxorubicin injection in a rat breast tumor model. Radiology. 2001;220(2):420–7.Google Scholar
  17. 17.
    Celikoglu F, Celikoglu SI, York AM, Goldberg EP. Intratumoral administration of cisplatin through a bronchoscope followed by irradiation for treatment of inoperable non-small cell obstructive lung cancer. Lung Cancer. 2006;51(2):225–36.Google Scholar
  18. 18.
    Burris HA 3rd, Vogel CL, Castro D, Mishra L, Schwarz M, Spencer S, Oakes DD, Korey A, Orenberg EK. Intratumoral cisplatin/epinephrine-injectable gel as a palliative treatment for accessible solid tumors: a multicenter pilot study. Otolaryngol Head Neck Surg. 1998;118(4):496–503.Google Scholar
  19. 19.
    Vogl TJ, Engelmann K, Mack MG, Straub R, Zangos S, Eichler K, Hochmuth K, Orenberg E. CT-guided intratumoural administration of cisplatin/epinephrine gel for treatment of malignant liver tumours. Br J Cancer. 2002;86(4):524–9.Google Scholar
  20. 20.
    Lee JD, Lee JM, Kim SW, Kim CS, Mun WS. MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol. 2001;2(3):151–8.Google Scholar
  21. 21.
    Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities–part II. J Vasc Interv Radiol. 2001;12(10):1135–48.Google Scholar
  22. 22.
    Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Ierace T, Solbiati L, Gazelle GS. Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions. Radiology. 2000;214(3):761–8.Google Scholar
  23. 23.
    Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.Google Scholar
  24. 24.
    Wu PF, Lin CH, Kuo CH, Chen WW, Yeh DC, Liao HW, Huang SM, Cheng AL, Lu YS. A pilot study of bevacizumab combined with etoposide and cisplatin in breast cancer patients with leptomeningeal carcinomatosis. BMC Cancer. 2015;15:299.Google Scholar
  25. 25.
    Maeda N, Osuga K, Higashihara H, Tomoda K, Mikami K, Nakazawa T, Nakamura H, Tomiyama N. Transarterial chemoembolization with cisplatin as second-line treatment for hepatocellular carcinoma unresponsive to chemoembolization with epirubicin-Lipiodol emulsion. Cardiovasc Intervent Radiol. 2012;35(1):82–9.Google Scholar
  26. 26.
    Yoshikawa M, Ono N, Yodono H, Ichida T, Nakamura H. Phase II study of hepatic arterial infusion of a fine-powder formulation of cisplatin for advanced hepatocellular carcinoma. Hepatol Res. 2008;38(5):474–83.Google Scholar
  27. 27.
    Okada S, Okazaki N, Nose H, Shimada Y, Yoshimori M, Aoki K. A phase 2 study of cisplatin in patients with hepatocellular carcinoma. Oncology. 1993;50(1):22–6.Google Scholar
  28. 28.
    Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol. 2002;54(2):159–80.Google Scholar
  29. 29.
    Celikoglu SI, Karayel T, Demirci S, Celikoglu F, Cagatay T. Direct injection of anti-cancer drugs into endobronchial tumours for palliation of major airway obstruction. Postgrad Med J. 1997;73(857):159–62.Google Scholar
  30. 30.
    Celikoglu F, Celikoglu SI. Intratumoural chemotherapy with 5-fluorouracil for palliation of bronchial cancer in patients with severe airway obstruction. J Pharm Pharmacol. 2003;55(10):1441–8.Google Scholar
  31. 31.
    Goldberg SN, Girnan GD, Lukyanov AN, Ahmed M, Monsky WL, Gazelle GS, Huertas JC, Stuart KE, Jacobs T, Torchillin VP, Halpern EF, Kruskal JB. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology. 2002;222(3):797–804.Google Scholar
  32. 32.
    Ahmed M, Lukyanov AN, Torchilin V, Tournier H, Schneider AN, Goldberg SN. Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol. 2005;16(10):1365–71.Google Scholar
  33. 33.
    Bull JM. An update on the anticancer effects of a combination of chemotherapy and hyperthermia. Cancer Res. 1984;44(10 Suppl):4853s–6s.Google Scholar
  34. 34.
    Kawai H, Minamiya Y, Kitamura M, Matsuzaki I, Hashimoto M, Suzuki H, Abo S. Direct measurement of doxorubicin concentration in the intact, living single cancer cell during hyperthermia. Cancer. 1997;79(2):214–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2019

Authors and Affiliations

  1. 1.Department of Radiology, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea
  2. 2.Department of Surgery, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations