Advertisement

CardioVascular and Interventional Radiology

, Volume 41, Issue 4, pp 618–627 | Cite as

Clinical Indication for Computed Tomography During Hepatic Arteriography (CTHA) in Addition to Dynamic CT Studies to Identify Hypervascularity of Hepatocellular Carcinoma

  • Tomoyo Fuji
  • Yuko NakamuraEmail author
  • Wataru Fukumoto
  • Kenji Kajiwara
  • Keigo Chosa
  • Chihiro Tani
  • Yoshiko Matsubara
  • Hiroaki Terada
  • Yukiko Honda
  • Koji Arihiro
  • Makoto Iida
  • Yasutaka Baba
  • Kazuo Awai
Clinical Investigation

Abstract

Purpose

To identify factors benefiting from computed tomography during hepatic arteriography (CTHA) in addition to dynamic CT studies at the preoperative evaluation of the hypervascularity of hepatocellular carcinoma (HCC).

Materials and Methods

We retrospectively divided 45 patients with HCC, who underwent both dynamic CT (dCT) and CTHA, into two groups based on the number of hypervascular HCCs identified on dCT and CTHA studies. In group A, the number of HCCs identified by dCT and CTHA was the same and additive CTHA had not been indicated. In group B, fewer HCCs were counted on dCT than on CTHA images, indicating that additive CTHA studies had been appropriate. We compared the patient characteristics, the serum alpha-fetoprotein level, and the tumor-liver contrast (TLC) of the main tumor on dCT scans of both groups. To identify factors alerting to the benefit of additional CTHA studies, we performed univariate logistic regression analysis. Statistically significant parameters were subjected to receiver operating characteristic analysis for obtaining the optimal cutoff value indicative of the benefit of CTHA.

Results

Univariate analysis identified only the TLC of the main tumor on dCT images as a significant factor for the benefit of CTHA images (P < 0.01). At the optimal cutoff value for the TLC of the main tumor on dCT images (15.9 Hounsfield units), the sensitivity and specificity for the benefit of CTHA were 85.0 and 92.0%, respectively.

Conclusion

Evaluation of the TLC of the main tumor on dCT scans identifies patients in whom additive CTHA studies are beneficial.

Keywords

Hepatocellular carcinoma Hypervascularity Dynamic CT CT during hepatic arteriography 

Notes

Compliance with Ethical Standards

Conflict of interest

Dr. Awai receives research funding (more than 2,000,000 yen) from Toshiba Medical Systems Co., Ltd. The other authors have no conflicts of interest.

Ethical Approval

All procedures in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed Consent

This study was approved by our institutional review board; prior informed patient consent was waived because ours was a retrospective study.

References

  1. 1.
    Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, et al. Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg. 2001;234:63–70.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Minagawa M, Makuuchi M, Takayama T, Kokudo N. Selection criteria for repeat hepatectomy in patients with recurrent hepatocellular carcinoma. Ann Surg. 2003;238:703–10.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Imamura H, Matsuyama Y, Tanaka E, Ohkubo T, Hasegawa K, Miyagawa S, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Takayama T. Surgical treatment for hepatocellular carcinoma. Jpn J Clin Oncol. 2011;41:447–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Matsuda M, Fujii H, Kono H, Matsumoto Y. Surgical treatment of recurrent hepatocellular carcinoma based on the mode of recurrence: repeat hepatic resection or ablation are good choices for patients with recurrent multicentric cancer. J Hepatobiliary Pancreat Surg. 2001;8:353–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Matsumoto Y, Fujii H, Matsuda M, Kono H. Multicentric occurrence of hepatocellular carcinoma: diagnosis and clinical significance. J Hepatobiliary Pancreat Surg. 2001;8:435–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Imamura H, Matsuyama Y, Miyagawa Y, Ishida K, Shimada R, Miyagawa S, et al. Prognostic significance of anatomical resection and des-gamma-carboxy prothrombin in patients with hepatocellular carcinoma. Br J Surg. 1999;86:1032–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Hasegawa K, Kokudo N, Imamura H, Matsuyama Y, Aoki T, Minagawa M, et al. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg. 2005;242:252–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eguchi S, Kanematsu T, Arii S, Okazaki M, Okita K, Omata M, et al. Comparison of the outcomes between an anatomical subsegmentectomy and a non-anatomical minor hepatectomy for single hepatocellular carcinomas based on a Japanese nationwide survey. Surgery. 2008;143:469–75.CrossRefPubMedGoogle Scholar
  10. 10.
    The Japan Society of Hepatology. Clinical practice guidelines for hepatocellular carcinoma 2013. http://www.jsh.or.jp/English/guidelines_en/Guidelines_for_hepatocellular_carcinoma_2013.
  11. 11.
    Pugacheva O, Matsui O, Kozaka K, Minami T, Ryu Y, Koda W, et al. Detection of small hypervascular hepatocellular carcinomas by EASL criteria: comparison with double-phase CT during hepatic arteriography. Eur J Radiol. 2011;80:e201–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Hayashi M, Matsui O, Ueda K, Kawamori Y, Kadoya M, Yoshikawa J, et al. Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR Am J Roentgenol. 1999;172:969–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Hayashi M, Matsui O, Ueda K, Kawamori Y, Gabata T, Kadoya M. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology. 2002;225:143–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Murakami T, Okada M, Hyodo T. CT versus MR imaging of hepatocellular carcinoma: toward improved treatment decisions. Magn Reson Med Sci. 2012;11:75–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Martino M, Marin D, Guerrisi A, Baski M, Galati F, Rossi M, et al. Intraindividual comparison of gadoxetate disodium-enhanced MR imaging and 64-section multidetector CT in the Detection of hepatocellular carcinoma in patients with cirrhosis. Radiology. 2010;256:806–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Miyayama S, Yamashiro M, Nagai K, Tohyama J, Kawamura K, Yoshida M, et al. Evaluation of tumor recurrence after superselective conventional transcatheter arterial chemoembolization for hepatocellular carcinoma: comparison of computed tomography and gadoxetate disodium-enhanced magnetic resonance imaging. Hepatol Res. 2016;46:890–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, Kaza RK, Liu PS, et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology. 2013;266:452–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Pietryga JA, Burke LM, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology. 2014;271:426–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Motosugi U, Bannas P, Bookwalter CA, Sano K, Reeder SB. An Investigation of Transient Severe Motion Related to Gadoxetic Acid-enhanced MR Imaging. Radiology. 2016;279:93–102.CrossRefPubMedGoogle Scholar
  20. 20.
    Matsui O, Kadoya M, Kameyama T, Yoshikawa J, Takashima T, Nakanuma Y, et al. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology. 1991;178:493–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Murakami T, Takamura M, Kim T, Hori M, Federle MP, Onishi H, et al. Double phase CT during hepatic arteriography for diagnosis of hepatocellular carcinoma. Eur J Radiol. 2005;54:246–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Jang HJ, Lim JH, Lee SJ, Park CK, Park HS, Do YS. Hepatocellular carcinoma: are combined CT during arterial portography and CT hepatic arteriography in addition to triple-phase helical CT all necessary for preoperative evaluation? Radiology. 2000;215:373–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Forner A, Reig ME, de Lope CR, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30:61–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Tsurusaki M, Sugimoto K, Fujii M, Fukuda T, Matsumoto S, Sugimura K. Combination of CT during arterial portography and double-phase CT hepatic arteriography with multi-detector row helical CT for evaluation of hypervascular hepatocellular carcinoma. Clin Radiol. 2007;62:1189–97.CrossRefPubMedGoogle Scholar
  26. 26.
    Ueda K, Matsui O, Kawamori Y, Nakanuma Y, Kadoya M, Yoshikawa J, et al. Hypervascular hepatocellular carcinoma: evaluation of hemodynamics with dynamic CT during hepatic arteriography. Radiology. 1998;206:161–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Pathologic diagnosis of early hepatocellular carcinoma. A report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49:658–64.CrossRefGoogle Scholar
  28. 28.
    Gonen M, Panageas KS, Larson SM. Statistical issues in analysis of diagnostic imaging experiments with multiple observations per patient. Radiology. 2001;221:763–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Baron RL. Understanding and optimizing use of contrast material for CT of the liver. AJR Am J Roentgenol. 1994;163:323–31.CrossRefPubMedGoogle Scholar
  30. 30.
    Yanaga Y, Awai K, Nakayama Y, Nakaura T, Tamura Y, Funama Y, et al. Optimal dose and injection duration (injection rate) of contrast material for depiction of hypervascular hepatocellular carcinomas by multidetector CT. Radiat Med. 2007;25:278–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Nakaura T, Nagayama Y, Kidoh M, Nakamura S, Namimoto T, Awai K, et al. Low contrast dose protocol involving a 100 kVp tube voltage for hypervascular hepatocellular carcinoma in patients with renal dysfunction. Jpn J Radiol. 2015;33:566–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Sultana S, Awai K, Nakayama Y, Nakaura T, Liu D, Hatemura M, et al. Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology. 2007;243:140–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S. Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS. 1989;97:689–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Masuda T, Nakaura T, Funama Y, Higaki T, Kiguchi M, Imada N, et al. Aortic and Hepatic Contrast Enhancement During Hepatic-Arterial and Portal Venous Phase Computed Tomography Scanning: multivariate Linear Regression Analysis Using Age, Sex, Total Body Weight, Height, and Cardiac Output. J Comput Assist Tomogr. 2017;41:309–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Murakami T, Kim T, Takamura M, Hori M, Takahashi S, Federle MP, et al. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology. 2001;218:763–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Ichikawa T, Kitamura T, Nakajima H, Sou H, Tsukamoto T, Ikenaga S, et al. Hypervascular hepatocellular carcinoma: can double arterial phase imaging with multidetector CT improve tumor depiction in the cirrhotic liver? AJR Am J Roentgenol. 2002;179:751–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Quaia E, D’Onofrio M, Cabassa P, Vecchiato F, Caffarri S, Pittiani F, et al. Diagnostic value of hepatocellular nodule vascularity after microbubble injection for characterizing malignancy in patients with cirrhosis. AJR Am J Roentgenol. 2007;189:1474–83.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mandai M, Koda M, Matono T, Nagahara T, Sugihara T, Ueki M, et al. Assessment of hepatocellular carcinoma by contrast-enhanced ultrasound with perfluorobutane microbubbles: comparison with dynamic CT. Br J Radiol. 2011;84:499–507.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology. 2009;251:771–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Yanaga Y, Awai K, Nakaura T, Utsunomiya D, Funama Y, Date S, et al. Hepatocellular carcinoma in patients weighing 70 kg or less: initial trial of compact-bolus dynamic CT with low-dose contrast material at 80 kVp. AJR Am J Roentgenol. 2011;196:1324–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Kim KS, Lee JM, Kim SH, Kim KW, Kim SJ, Cho SH, et al. Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Invest Radiol. 2010;45:149–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee JA, Jeong WK, Kim Y, Song SY, Kim J, Heo JN, et al. Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging. Eur J Radiol. 2013;82:569–76.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2017

Authors and Affiliations

  • Tomoyo Fuji
    • 1
  • Yuko Nakamura
    • 1
    Email author
  • Wataru Fukumoto
    • 1
  • Kenji Kajiwara
    • 1
    • 2
  • Keigo Chosa
    • 1
  • Chihiro Tani
    • 1
  • Yoshiko Matsubara
    • 1
  • Hiroaki Terada
    • 1
  • Yukiko Honda
    • 1
  • Koji Arihiro
    • 3
  • Makoto Iida
    • 1
  • Yasutaka Baba
    • 1
  • Kazuo Awai
    • 1
  1. 1.Diagnostic RadiologyHiroshima UniversityHiroshimaJapan
  2. 2.RadiologyKochi UniversityKochiJapan
  3. 3.Anatomical Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations